

КАТАЛОГ ПРОМЫШЛЕННОГО КЛИМАТИЧЕСКОГО ОБОРУДОВАНИЯ

ЧИЛЛЕРЫ, ФАНКОЙЛЫ, ИНВЕРТОРНЫЕ КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ БЛОКИ

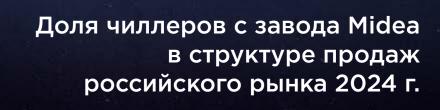
2025-2026

СОДЕРЖАНИЕ

О компании	⁴ Модульные четырехтрубные
Экосистема Daichi2	чиллеры с воздушным охлаждением
Обозначение моделей2	конденсатора и спиральными
Модельный ряд и производительность	7 компрессорами 6°
	Модельный ряд и производительность62
Мини-чиллеры с воздушным	Режимы работы6
охлаждением конденсатора	Конструктивные и функциональные особенности64
и ротационным инверторным	Основные и опциональные возможности6
компрессором	Технические характеристики6
Серия ECO mini3) _
•	- Бинтовые чиллеры с воздушным
Модельный ряд и производительность	охлаждением конденсатора
Конструктивные и функциональные особенности	4 Модельный ряд и производительность69
Возможности использования мини-чиллеров на различных объектах	б Конструктивные и функциональные особенности70
Расходо-напорные характеристики	Встроенный гидравлический модуль
встроенного гидравлического модуля3	Tavarana vanarana vanarana 7
Технические характеристики	В технические характеристики
Мини-чиллеры с воздушным охлаждением конденсатора и ротационным инверторным	Модульные чиллеры с воздушным охлаждением конденсатора и винтовым инверторным компрессором
компрессором ARCTIC39	Серия AirBoost76
	Midea AirBoost для бизнес-центра
Модельный ряд и производительность	"STONE Caberiobekan"
Конструктивные и функциональные особенности	Tiogeribilibit prig vi ripovisbodivi eribilioe ib
технические характеристики4	
Maryri III ia kupantaniii ia ilkeennii	Система управления8 Технические характеристики8
Модульные инверторные чиллеры	
Aqua Thermal4	Двухконтурное исполнение (MASC_A-SB3ZXF-2C)8
Модельный ряд и производительность4	б Технические характеристики86
Конструктивные и функциональные особенности4	/ Модельный ряд и производительность8
Технические характеристики4	В Основные компоненты89
	Система управления9
Модульные высокопроизводительны	е Технические характеристики92
чиллеры с воздушным охлаждением	
конденсатора и спиральным	
компрессором 5	Чиллер воздушного охлаждения
Модельный ряд и производительность5	1 с центробежным компрессором
Модельный ряд и производительность5 Конструктивные и функциональные особенности5	1 с центробежным компрессором 2 на магнитных подшипниках 94
	1 с центробежным компрессором на магнитных подшипниках
Конструктивные и функциональные особенности5	1 с центробежным компрессором на магнитных подшипниках

1

СОДЕРЖАНИЕ

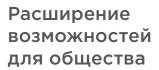

Модульные чиллеры	Особенности и преимущества	142
с водяным охлаждением	Технические характеристики	
	инверторного центробежного чиллера	143
конденсатора и спиральным	Интеллектуальная система управления MIC— Midea Intelligent Control	145
компрессором102	Стандартные виды защиты	
Модельный ряд и производительность103	Программное обеспечение для подбора	
Конструктивные и функциональные	Опции и дополнительные принадлежности	
особенности104 Технические характеристики105	Технические характеристики	
технические характеристики105	центробежного чиллера серии Magboost	156
Чиллеры с водяным охлаждением	Модульный центробежный чилле	an e
конденсатора	с магнитными подшипниками	· P
и винтовым компрессором107		
•	и водяным охлаждением	
Особенности и преимущества109	конденсатора	
	MagBoost Apex	158
Чиллеры с водяным охлаждением	Конструктивные и функциональные особенности	159
конденсатора и винтовым	Особенности и преимущества	160
компрессором высокой	Технические характеристики	161
эффективности112		
Особенности и преимущества113	АС-фанкойлы	162
Технические характеристики115	Модельный ряд АС-фанкойлов	163
. o	Кассетный тип	
Высокоэффективные чиллеры	Канальный тип	169
с водяным охлаждением	Настенный тип	179
	Напольно-потолочный тип	180
конденсатора и винтовым		
инверторным компрессором117	DC-фанкойлы	189
Особенности и преимущества118	Модельный ряд DC-фанкойлов	190
Технические характеристики121	Кассетный тип	191
	Канальный тип	198
Чиллеры с водяным	Настенный тип	
охлаждением конденсатора	Напольно-потолочный тип	203
и винтовым компрессором,		
с опцией теплового насоса124	Инверторные	
Особенности и преимущества125	компрессорно-конденсаторные	
, , ,	блоки	212
Центробежные чиллеры130	Конструктивные и функциональные особенности	21.4
Модельный ряд и производительность131	Модульное объединение	214
Высокоэффективный и сверхвысокоэффективный	компрессорно-конденсаторных блоков	220
центробежный чиллер132	Технические характеристики	221
Полугерметичный центробежный компрессор133	Модули для фреоновых	00.
Ключевые технологии134 Технические характеристики высокоэффективного	секций центральных кондиционеров	224
центробежного чиллера137	Рекомендуемые модули для фреоновых секций центральных кондиционеров	225
Сверхвысокоэффективный центробежный инверторный чиллер141	VRFXpress. Программа подбора инверторных компрессорно-конденсаторных блоков	226
ипверторпани чилиер141	KOMINECCOPRO-KORGERCATOPRING UNOKOB	∠∠0

Компания «Даичи» — дистрибьютор № 1 в мире по продажам чиллеров Midea

22%

MIDEA GROUP

Входит в список Fortune 500 и демонстрирует устойчивый рост бизнеса в нескольких секторах. Компания предоставляет индивидуальные решения для умного дома, промышленных технологий, робототехники и автоматизации, технологий строительства, а также цифровых инноваций.


Устойчивое предприятие

№ 246 в рейтинге Fortune Global 500

В 2025 году Midea Group заняла 246-е место в рейтинге 500 крупнейших мировых компаний.

Надежный партнер

Международные проекты

Кредитный рейтинг A, присвоенный S&P Global Ratings

Midea Group имеет самый высокий рейтинг среди частных производственных компаний Китая, будучи одной из немногих на международной арене с рейтингом А или выше.

Компания входит в топ-50 промышленных предприятий Китая

Midea Group отмечена наградой Forbes за выдающееся экологически чистое производство, углеродную нейтральность, устойчивое развитие и следование принципам ESG.

Главный партнер FC Barcelona

В 2025 году Midea и футбольный клуб «Барселона» объявили о заключении исторического соглашения. С сезона 2026/2027 Midea станет главным партнером клуба на ближайшие пять сезонов.

#Worldclass Спонсор Manchester City

Midea Group и Manchester City начали глобальное партнерство с 2020 года и запустили несколько отмеченных наградами кампаний.

История развития

Компания продолжает идти вперед и покорять новые вершины, не останавливаясь на достигнутом.

		2024	Midea — компания № 1 в мире по производству бытовых и полупромышленных инверторных кондиционеров.
		2023	55-летие компании.
II P		2022	Midea запустила зарубежное производство в Таиланде.
	•	2021	Выручка Midea превысила 300 миллиардов юаней. Компания заняла 278-е место в рейтинге Fortune Global 500.
	•	2019	Компания заняла 307-е место в рейтинге Fortune Global 500.
KUKA		2017	Midea приобрела 94,55 % акций KUKA и 79,37 % акций SERVOTRONIX, официально вступив в индустрию робототехники и автоматизации.
€ CLIVET TOSHIBA		2016	Midea впервые вошла в список Fortune Global 500 и стала первой китайской компанией по производству бытовой техники, включенной в рейтинг.
			Midea приобрела 80,1 % акций Toshiba Lifestyle Products & Services Corporation и 80 % акций Clivet.
		2013	Midea Group стала первой компанией в материковом Китае, которая успешно приватизировала зарегистрированную на бирже компанию, став таким образом публичной.
	•	2012	Хэ Сянцзянь, основатель Midea, ушел из правления, Пол Фанг был назначен новым председателем.
	•	2010	Доход от продаж Midea превысил 100 миллиардов юаней. В том же году было введено в эксплуатацию новое здание штаб-квартиры Midea.
Πψ		2007	Midea построила свою первую зарубежную производственную базу во Вьетнаме.
	•	2004	Midea еще больше диверсифицировала свой продуктовый портфель, осуществив серию слияний и поглощений. Компания расширила бизнес благодаря категории бытовой техники.
	•	2000	Midea провела церемонию тысячелетия, чтобы отметить начало новой эры. В том же году выручка Midea от продаж превысила 10 миллиардов юаней.
	•	1990	Midea инвестировала более 100 миллионов юаней в строительство первого индустриального кластера высокого класса.
		1985	Midea вошла в индустрию климатического оборудования, положив начало исследованию новых категорий техники для дома.
	•	1981	Компания зарегистрировала торговую марку Midea, что ознаменовало основание бренда Midea.
	•	1968	Г-н Хэ Сянцзянь возглавил группу из 23 жителей Биецзяо, чтобы начать бизнес со стартовым капиталом всего 5000 юаней.

ОБОРУДОВАНИЕ MIDEA БЫТОВОГО, КОММЕРЧЕСКОГО И ПРОМЫШЛЕННОГО НАЗНАЧЕНИЯ

Midea RAC (Residential Air Conditioners) — бизнес-подразделение Midea Group, объединяющее исследования и разработки, производство, продажи, проектирование, установку и послепродажное обслуживание. Компания — ведущий мировой производитель систем отопления, вентиляции, кондиционирования и поставщик профессиональных решений для обработки воздуха.

Midea MBT (Building Technologies) является ключевым бизнес-подразделением Midea Group, которое стратегически концентрирует бизнес на оборудовании, услугах и комплексных решениях для интеллектуальных систем управления зданиями, включая источники энергии, лифты, системы отопления, вентиляции и кондиционирования воздуха.

15,56 млрд \$ общей выручкиПо состоянию на 2023 год;
курс — 6.8 юаня за доллар США

190 ТЫС. сотрудников По состоянию на 2023 год

0,4 млрд клиентов

> 200 стран и регионов присутствия

Значимые бренды с безусловной известностью в мире

TOSHIBA

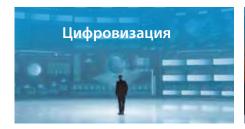
Midea предлагает широкий спектр климатических решений для коммерческих и жилых помещений, а также бытовой техники, которая полностью удовлетворяет потребности повседневной жизни дома, на работе или в любом другом месте.

Toshiba — исторический бренд, основанный в 1875 году. Компания разработала множество инновационных электронных продуктов, которые были первыми в своем роде в Японии и во всем мире. В 2016 году Midea Group приобрела бизнес бытовой техники этого культового японского бренда.

Предвосхищая будущее

50 %

сотрудников отдела исследований и разработок магистры и доктора наук различных технических направлений


авторизованных патентов позволяют Midea продолжать исследовать мир инновационных интеллектуальных решений

млрд \$

инвестиций в исследования и разработки за последние 5 лет с темпами роста 14 % в годовом исчислении повышают конкурентоспособность Midea

Создавая будущее

Midea, будучи новатором в индустрии, совершенствует производственные процессы, внедряя инновационные решения.

Первый производственный процесс с мгновенной цифровой аналитикой

LED-экраны отображают аналитику в реальном времени практически по всем аспектам работы завода: от планирования производства и логистики до мониторинга производственных и бизнес-процессов.

Первая полностью автоматизированная производственная линия в индустрии климатического оборудования с роботами KUKA

Роботы KUKA повышают производительность, время непрерывной работы, качество и эффективность, а также способствуют снижению затрат и количества отходов.

Первый высокооцифрованный и автоматизированный электронный цех

Система SCADA реализует соединение и обмен данными между оборудованием. При отсутствии стагнации производственные циклы сокращаются за счет уменьшения времени ожидания.

39 международных сертификатов качества и поддержка 3000 инженеров и инспекторов

ГЛОБАЛЬНЫЕ МОЩНОСТИ И ЛОКАЛЬНЫЕ ОСОБЕННОСТИ

Midea — один из крупнейших производителей в мире с производственными базами в 16 странах. В портфолио компании представлены глобальные ресурсы в области исследований и разработок по всему миру, включая 20 исследовательских центров в 9 странах.

Повышение эффективности труда

на 28%

Снижение себестоимости единицы продукции

на 14 %

Сокращение времени выполнения заказа

на 56%

160 000 m²

занимает крупнейшая производственная база бытовых и коммерческих кондиционеров в Юго-Восточной Азии, включающая промышленных роботов и высокотехнологичные решения, автоматизацию логистики, а также системы транспортировки

4 млн единиц

годовая мощность крупнейшего зарубежного завода по производству бытовых кондиционеров Midea

Передовые научно-исследовательские институты и центры разработок

Американский исследовательский центр Midea (MARC) Основан в 2015 году

Midea America Research Center (MARC) в Луисвилле, Кентукки — американский исследовательский центр Midea Group, работающий над исследованиями и разработками, инновациями и стратегией разработки продуктов для американских брендов и расширением сурествующих категорий продукции. Эксперты из МАRC передают Midea Group свое глубокое понимание индустрии бытовой техники в США, ее тенденций и клиентов. Они исследуют технологии и инновации, получают патенты в США, обеспечивая техническую поддержку категорий продуктов в рамках бизнеса в Северной Америке.

Этот центр также активно взаимодействует с органами по стандартизации, с государственными регулирующими организациями и сторонними агентствами по тестированию.

Центр исследований и разработок Midea в Германии Основан в 2017 году

Центр исследований и разработок Midea в Германии расположен в Штутгарте, одном из важнейших инновационных и технологических регионов страны. В этом центре работают команды ведущих специалистов европейской отрасли бытовой электротехники, которые поддерживают исследования и разработки в штаб-квартире по инновациям в продуктах, ориентированных на местных потребителей.

Этот центр сотрудничает с ведущими предприятиями различных секторов промышленности с целью установления тесного технологического партнерства. Результаты его исследований и инновационные ноу-хау стимулируют новаторские технологические разработки Midea Group.

Центр новых технологий Кремниевой долины (ЕТС) Основан в 2016 году

Центр новых технологий Midea в Кремниевой долине (ETC) расположен в Сан-Хосе, штат Калифорния, и специализируется в первую очередь на области исследований и применения технологий искусственного интеллекта, включая компьютерное зрение, речь, науку о данных и решения промышленного искусственного интеллекта. Расположенный в Силиконовой долине, крупнейшем в мире портале талантов и ресурсов, ЕТС помогает Midea Group устанавливать глобальные партнерские отношения с лидерами отрасли и расширяет применение передовых технологий в бытовой технике Midea.

Миланский центр дизайна (MDC) Основан в 2016 году

Миланский центр дизайна (MDC) занимается исследованием трендов современного дизайна, привлекая к работе местных талантливых специалистов с разнообразным опытом. MDC также извлекает выгоду из разнообразия местных ресурсов благодаря лидирующей позиции Милана в индустрии моды, архитектуры и товаров для дома. Центр дизайна реализует новые проекты взаимодействия с пользователями и совершает инновационные прорывы в сотрудничестве с командами дизайнеров головного офиса, одновременно задавая направление проектам по дизайну продуктов Midea Group.

Центр исследований и разработок в Таиланде Основан в 2022 году

Центр исследований и разработок в Таиланде расположен в Сираче, Чонбури, и специализируется на рынке Юго-Восточной Азии. Анализ потребностей клиентов и тенденций рынка помогает нам выявлять возможную причину претензии и незамедлительно принимать меры для устранения проблемы. Этот центр исследований и разработок также активно взаимодействует с местными органами по стандартизации, с государственными регулирующими органами. Помимо инженеров, находящихся на главной базе в Таиланде, у компании есть партнеры в Индонезии и на Филиппинах, которые из первых рук узнают о потребностях пользователей и клиентов.

Награды и признание

Каждый год Midea получает более 40 наград в области дизайна на различных мировых выставках, таких как Reddot, iF и Good Design Award.

MIDEA ВОПЛОЩАЕТ В ЖИЗНЬ ВЫДАЮЩИЕСЯ ИННОВАЦИИ

Высокотехнологичное оборудование Midea всегда удовлетворяет меняющимся потребностям клиентов.

Midea разрабатывает и развивает экологически безопасные и высокоэффективные технологии уже более 15 лет

2024 Компания №1 в мире по производству бытовых и полупромышленных инверторных кондиционеров

по результатам исследований Euromonitor

2023 Компания №1 в мире по производству кондиционеров, работающих на экологичном фреоне R290

по результатам исследований Euromonitor

2022 1-й высокоэффективный кондиционер с хладагентом R454B,

сертифицированный Институтом кондиционирования, отопления и охлаждения

2021 1-я экологическая декларация продукции

в категории климатического оборудования и сертификат о контроле углеродного следа, верифицированный TUVRheinland

2021 2 100 000 комплектов

кондиционеров с хладагентом R290 введены в эксплуатацию

2020 Премия за выдающийся вклад

от Организации Объединенных Наций по промышленному развитию

2018 1-й сертификат Blue Angel

в категории кондиционирования от Федерального министерства окружающей среды, охраны природы и ядерной безопасности Германии

2011 1-я линия по производству компрессоров R290

в климатической отрасли введена в эксплуатацию

Midea Group — ведущая мировая высокотехнологичная компания. Она была основана в 1968 году, прошла путь от небольшого производства до современного промышленного гиганта, официально зарегистрирована на бирже и по состоянию на 2025 год занимает 246-е место в рейтинге Global Fortune 500. Компания насчитывает более 190 000 сотрудников в более чем 200 представительствах по всему миру и делает комфортной жизнь миллиардов людей.

Первый бытовой кондиционер Midea сошел с конвейера в 1985 году. С тех пор Midea стала площадкой по производству полного спектра климатической техники мирового уровня. Производство оснащено самым современным оборудованием и является одним из наиболее передовых в Китае. Корпорация Midea ежегодно осуществляет многомиллионные инвестиции в инновации. Для дальнейшего повышения технологической конкурентоспособности продукции компания основала собственный центральный научно-исследовательский институт в городе Шуньдэ.

Бренд Midea ежегодно укрепляет свои позиции благодаря более чем 30 производственным площадкам и 20 научноисследовательским, опытно-конструкторским центрам по всему миру. Сегодня научные исследования и разработки института служат базой для выпуска всего оборудования.

Климатическое оборудование Midea представлено двумя направлениями

- 1. Midea RAC предлагает широкую линейку бытовых кондиционеров: от сплитсистем, оконных и мобильных кондиционеров до осушителей и коммерческих решений. 12 производственных баз в Китае, Вьетнаме, Индии, Египте, Таиланде, Бразилии и Аргентине обеспечивают суммарный годовой выпуск свыше 67 млн комплектов кондиционеров.
- 2. Бизнес-подразделение Midea MBT является поставщиком комплексных HVAC-решений: VRF-системы, чиллеры, фанкойлы, тепловые насосы и др. По каждому из направлений Midea занимает лидирующие позиции на рынке. На данный момент занимает первое место по продажам центробежных чиллеров в Китае.

СЕГМЕНТЫ БИЗНЕСА

Основанная в 1968 году, компания Midea за 57 лет непрерывного развития превратилась в технологичную группу компаний с пятью основными направлениями деятельности.

Компания является крупнейшим производителем бытовой техники и брендом № 1 в мире по выпуску оборудования для обработки воздуха. Midea реализует свою стратегию, чтобы оставаться высокодинамичным предприятием со стремлением к постоянному росту, характерному для бизнеса мирового уровня.

умный дом

Midea Group предлагает инновационные решения и дает покупателям возможность использовать высокотехнологичное оборудование у себя дома.

Midea TOSHIBA

COLMO WAHIN eureka cucheno

Midea Group является ведущим мировым производителем не только систем кондиционирования, но и комплектующих - компрессоров, элементов автоматики и теплообменного оборудования.

GMCC — собственный бренд компрессоров Midea Group - имеет самую большую долю на мировом рынке компрессоров для кондиционирования воздуха с годовым объемом продаж более 100 миллионов единиц.

ТЕХНОЛОГИИ СТРОИТЕЛЬСТВА

Midea Group предоставляет комплексные решения в области отопления, вентиляции, кондиционирования воздуха, лифтов и управления энергопотреблением для жилых и коммерческих зданий, а также других общественных объектов.

РОБОТОТЕХНИКА И АВТОМАТИЗАЦИЯ

Midea Group предоставляет решения для «фабрик будущего». Портфель продукции включает в себя промышленных роботов и решения системы автоматизации логистики и передачи данных, а также решения для медицинской сферы и сферы развлечений.

ЦИФРОВЫЕ **ИННОВАЦИИ**

Midea Group предоставляет решения для интеграции систем кондиционирования в системы управления предприятием по протоколу Modbus.

История промышленного климатического оборудования Midea MBT

2001

Центробежный чиллер назван ключевым национальным продуктом в Китае

2006

Выпущен первый центробежный чиллер Midea с частотно-регулируемым приводом

2016

Альянс с компанией Clivet

1999

Начало производства промышленных систем кондиционирования Midea MBT

2007

Реализован первый международный проект с центробежными чиллерами Midea

2017

Разработаны чиллеры с воздушным охлаждением конденсатора на базе спиральных компрессоров Danfoss — линейка с самым широким опциональным составом

2015

Выпущен первый инверторный центробежный чиллер с магнитными подшипниками

2023

Впервые в Китае были выпущены инверторные модульные чиллеры со встроенным гидромодулем AQUA THERMAL

2021

Выпущены FULL DC-INVERTER фанкойлы Midea, сертифицированные по стандартам Eurovent

2025

Образование нового альянса — MBT Climate (Midea, Clivet, ARBONIA Climate), после приобретения ARBONIA Climate

2024

Midea заняла лидирующую позицию по объему экспорта чиллеров на российский рынок

2022

Запуск производства новой линейки чиллеров Airboost Freecooling

2023

Запуск производства FULL DC-INVERTER компрессорно-конденсаторных блоков

2024

Компания «Даичи» становится эксклюзивным дистрибьютором климатического оборудования Midea в России и дистрибьютором № 1 в мире по импорту чиллеров

2025

Начало продаж новой передовой линейки центробежных чиллеров с воздушным охлаждением конденсатора Airboost MAG

ПОДРАЗДЕЛЕНИЕ MIDEA BUILDING TECHNOLOGIES (MBT)

Подразделение MBT, основанное в 1999 году как первый производитель VRF-систем в Китае, прошло путь стратегического развития через интеграцию технологий, активное расширение и интернационализацию. Рост компании начался с внедрения технологий Toshiba Carrier и продолжился приобретением завода Chongqing General (2004), что позволило освоить производство крупнотоннажных чиллеров.

Важным этапом стало создание совместных предприятий с мировыми лидерами, включая Siemens, Bosch и Siix, что укрепило позиции МВТ в различных секторах рынка. Дальнейшая глобализация включала приобретение итальянского бренда коммерческих кондиционеров CLIVET (2016) и компании LINVOL Elevator (2020) для развития бизнеса интеллектуальных решений для зданий.

В 2021 году был создан Исследовательский центр строительных технологий, который был официально преобразован в подразделение Midea Building Technologies. Мировая экспансия продолжилась созданием производственно-исследовательской базы в итальянском Фельтре (2022) и строительством Индустриального парка в Таиланде (2024). Завершающим этапом трансформации стало образование в 2025 году европейского климатического альянса МВТ Climate совместно с ARBONIA и Clivet, что позволило предоставлять европейским клиентам более комплексные и эффективные решения и услуги.

Бизнес МВТ

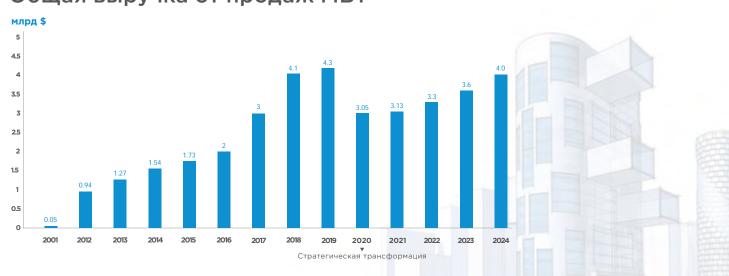
Smart in one — фокус на сопутствующих товарах и услугах для зданий

Экология строительства

Создание платформы

Экологичные и низкоуглеродные технологии

Использование низкоуглеродных практик в строительных технологиях для создания пользы обществу


Предложение решений для устойчивого развития человечества

Интеллектуальный пользовательский опыт

Создание интеллектуального пространства обеспечивает лучший пользовательский опыт

Общая выручка от продаж МВТ

Постоянный рост МВТ

За последние 20 лет бизнес Midea Building Technologies сохранил устойчивую тенденцию развития. В 2020 году МВТ провела масштабную стратегическую трансформацию бизнеса, сделав ставку на комплексные В2В-решения. В 2024 году доход от продаж МВТ достиг 4 миллиардов долларов, из которых дебиторская задолженность зарубежных торговых компаний достигла 1,5 миллиарда долларов США.

2,5 млрд USD

1,5 млрд USD

Внутренний рынок

Зарубежные продажи МВТ

Сила исследований и разработок на производственной базе МВТ

В мире существует шесть производственных баз, пять из которых находятся в Китае, а одна — в Италии. Эти базы могут обеспечить производственную мощность и быструю доставку по всему миру.

В 2024 году МВТ было произведено:

145 000 чиллеров

1 650 000 фанкойлов

1 050 000 тепловых насосов ATW

2 000 000 наружных блоков для VRF-систем

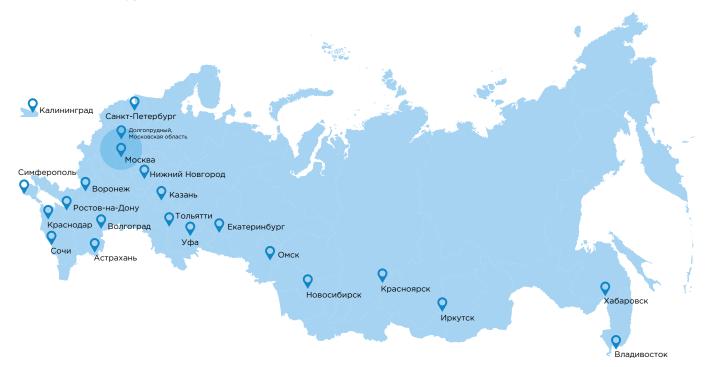
8 200 000 внутренних блоков для VRF-систем

50 000 лифтов и эскалаторов

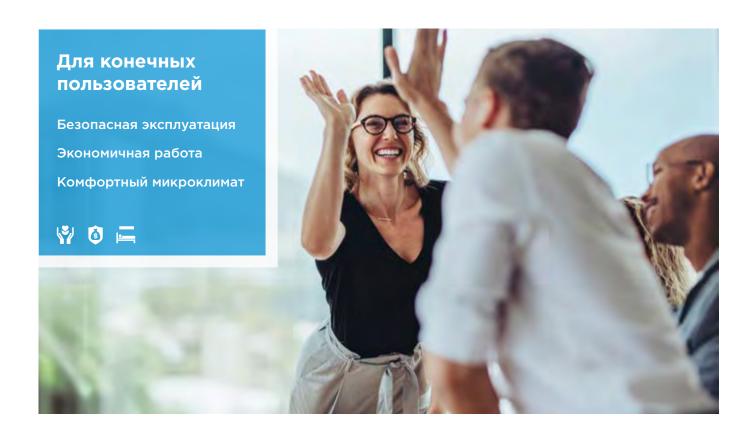
Система контроля качества МВТ

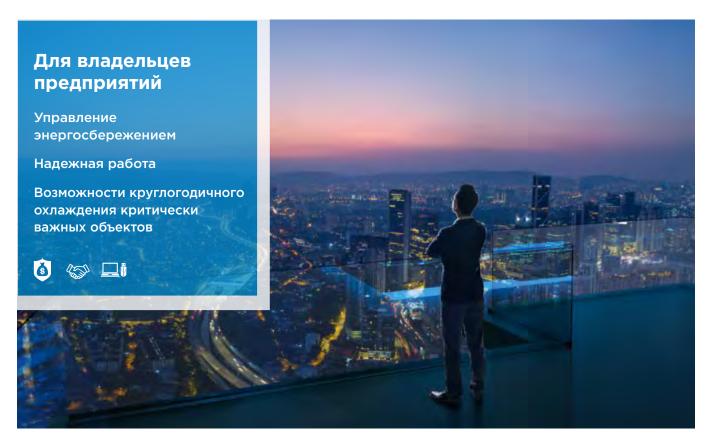
MBT инвестирует огромные ресурсы, чтобы создать систему контроля качества мирового класса. МВТ создала испытательные лаборатории в области безопасности, производительности, экологии и надежности.

Центры обслуживания клиентов и центры исследований и разработок МВТ

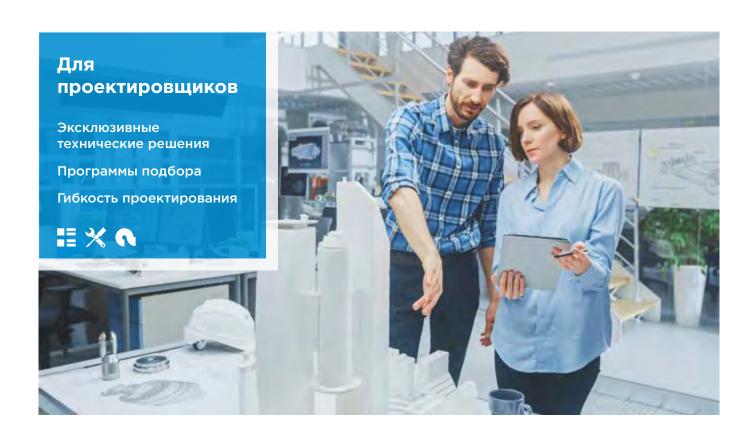

Учебные центры и шоурумы МВТ за рубежом

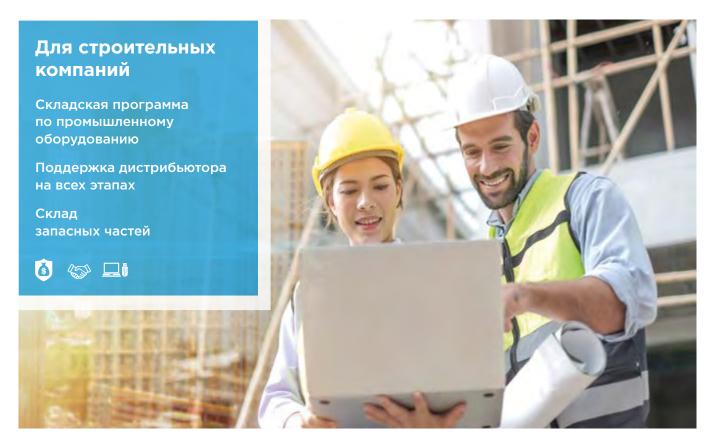
Чтобы обеспечить быструю передачу знаний и локализовать обучение, в ряде ключевых зарубежных стран открыты 50 учебных классов и 26 шоурумов Midea.




Международная сеть поставки запасных частей

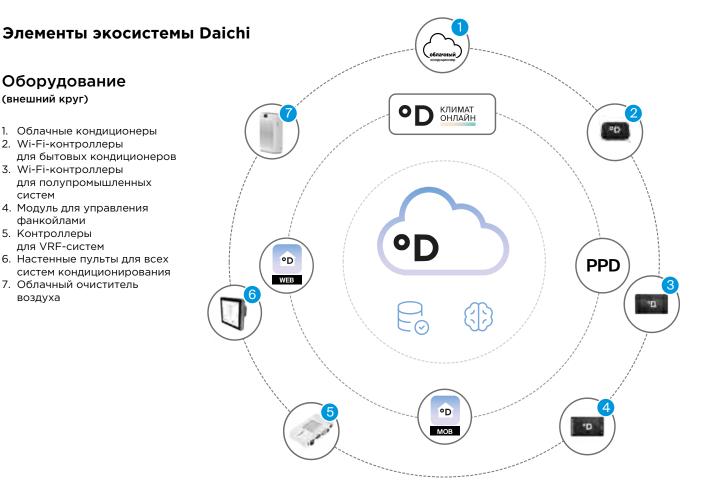
Центры запасных частей размещены по всему миру. На сегодня они находятся уже в 30 странах, в том числе и в России. Быстрые сроки поставки помогают улучшить послепродажный сервис и обеспечить высокую удовлетворенность пользователей оборудования.




Преимущества промышленного оборудования Midea

Экосистема Daichi

В 2020 году компания «Даичи», эксклюзивный дистрибьютор бренда Midea в России, поставила перед собой задачу разработать экосистему климатических устройств, подключенных к облачным сервисам. Облачные сервисы работают на базе «Облака Daichi», серверы которого находятся на территории РФ, что обеспечивает быстрый отклик и бесперебойную работу оборудования различных торговых марок.


Экосистема Daichi — это набор сервисов и оборудования, позволяющих создать интуитивную интеллектуальную гибкую систему управления микроклиматом в помещении на базе устройств Daichi.

Ежегодно компания «Даичи» совершенствует линейку облачных устройств, а также расширяет их функциональность, чтобы повысить комфорт пользователей.

Оборудование

(внешний круг)

- 1. Облачные кондиционеры
- 2. Wi-Fi-контроллеры для бытовых кондиционеров
- 3. Wi-Fi-контроллеры для полупромышленных систем
- 4. Модуль для управления фанкойлами
- 5. Контроллеры для VRF-систем
- 6. Настенные пульты для всех систем кондиционирования
- 7. Облачный очиститель воздуха

Программное обеспечение (средний круг)

- «Климат Онлайн» дистанционный мониторинг параметров работы оборудования 24/7
- PPD (Power Proportional Distribution) система учета и распределения электроэнергии для промышленных
- Приложение для управления со смартфона
- Приложение для управления через веб-браузер

Техническая инфраструктура

(внутренний круг)

- Облачный сервер
- База знаний
- Программный комплекс, обеспечивающий работу встроенных интеллектуальных функций

Управление

через:

- мобильное приложение
- веб-приложение
- голосовые помощники Алиса (Яндекс), Маруся (VK), Салют (Сбер), Alexa (Amazon), Google Assistant
- настенные Wi-Fi-пульты

Передовые облачные решения для систем кондиционирования

Wi-Fi-контроллер Daichi — это один из ключевых элементов Облачного кондиционера и Экосистемы Daichi, позволяющий подключить оборудование различных брендов к экосистеме, оценить удобство мобильного управления и забыть о проблемах с обслуживанием благодаря круглосуточному мониторингу параметров работы кондиционера.

Компания «Даичи» обновила линейку контроллеров и выпустила устройства нового поколения СTRL-AC. Появилась возможность подключать дополнительные датчики для мониторинга параметров оборудования и воздуха в помещении, а также управлять кондиционером локально через Bluetooth-соединение при отсутствии подключения к сети Интернет.

Теперь, чтобы узнать фактическую температуру и влажность в помещении, нужно всего лишь открыть приложение Daichi Comfort. Это позволит более точно настраивать параметры работы.

Кроме этого, компания разработала настенные Wi-Fi-пульты с сенсорным экраном, которые позволяют подключить к мобильному управлению внутренние блоки как бытовых, так и полупромышленных и промышленных систем кондиционирования.

Подробная информация о контроллерах представлена на сайте: aircon-wifi.ru

Wi-Fi-контроллеры

Бытовые и мульти-сплит-системы

CTRL-AC-S-31 NEW
CTRL-AC-S-32 NEW
DW21-B
DW22-B

Wi-Fi-контроллеры

Полупромышленные кондиционеры и VRF

CTRL-AC-LF-CN-3 NEW
CTRL-AC-LF-DA-3 NEW
DW12-BL
DW21-BL

Контроллеры централизованного управления

Многозональные системы

DCM-NET-01 DCM-BMS-01

Настенный пульт

Бытовые, полупромышленные и VRF-системы

DC60W DC70W / DC80W NEW

Модульный пульт с WI-Fi

Бытовые, полупромышленные, VRF-системы, фанкойлы

REM-VLSF-C **NEW** REM-VLSF-D **NEW**

Модуль релейного управления

Для связи фанкойлов и настенных пультов

R-01 **NEW**

Программы обслуживания клиентов

Для кондиционеров Midea разработаны специальные программы постпродажного обслуживания клиентов, которые поддерживаются инженерным центром дистрибьютора.

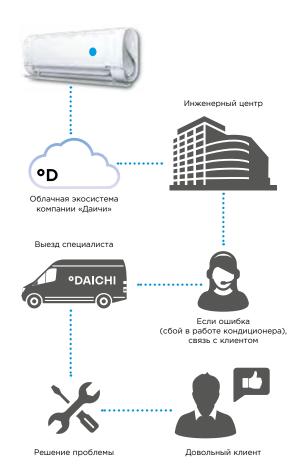
Программа «Климат Онлайн»

Программа «Климат Онлайн» — это подписка на интернетподключение кондиционера к службе дистанционного мониторинга параметров оборудования.

Центр мониторинга «Даичи» принимает сигналы о состоянии кондиционера, узнает о неполадках, проводит дистанционную диагностику, оператор сервисной службы связывается с владельцем кондиционера, предлагая ему устранить неполадки.

Предложение доступно по годовой подписке. Обслуживание и регламентные работы оплачиваются по прейскуранту.

Необходимое оборудование


Для подключения онлайн-мониторинга для сплит- / мультисплит-систем, полупромышленных кондиционеров или систем Sky Air во внутренний блок кондиционера необходимо установить Wi-Fi-контроллер Daichi.

Wi-Fi-контроллер для бытовых сплит-систем и мульти-сплит-систем DW21/22-B CTRL-AC-S-31/32

Wi-Fi-контроллер для полупромышленных кондиционеров и внутренних блоков VRF DW12-BL CTRL-AC-LF-CN-3

Приложение Daichi Comfort

Для удаленного управления климатическим оборудованием компания «Даичи» разработала мобильное приложение Daichi Comfort. При установке контроллера в систему кондиционирования смартфон или ноутбук с приложением Daichi Comfort становится интеллектуальным пультом для всего климатического оборудования, установленного дома, в офисе или на предприятии.

Мобильное управление превращает любой кондиционер в оборудование премиум-класса.

Главным преимуществом контроллеров бренда Daichi является возможность работы с климатической техникой других брендов*, список которых постоянно растет.

Единое приложение Daichi Comfort позволит управлять сплит-системами, мульти-сплит-системами, полупромышленным оборудованием и системами VRF, где бы вы ни находились.

App Store является товарным знаком Apple Inc. Google Play и логотип Google Play являются товарными знаками корпорации Google LLC.

Персонализация

Позволяет не только переименовать кондиционер по желанию клиента, например, «гостиная» или «спальня», но и создавать свои собственные сценарии и выводить их в виде кнопки на панель быстрого доступа.

Встроенные функции

Комфортный сон, режим тишины, функция «Мне не дует», режим энергосбережения и групповые команды.

Управление через голосовые ассистенты

Управлять кондиционером удобнее голосом через помощников: Алиса (Яндекс), Маруся (VK), Салют (Сбер), Alexa (Amazon), Google Assistant Алиса (Яндекс), Маруся (VK), Салют (Сбер), Alexa (Amazon), Google Assistant.

Интеллектуальные сценарии

Позволяют на основании показаний датчиков и исторических данных управлять климатическим оборудованием.

Диагностика и мониторинг оборудования

Мониторинг работы кондиционера 24/7 позволит определить проблему без выездной диагностики, а также проинформирует клиента о неисправности и поможет запланировать визит инженера для ее устранения.

Сценарии по геолокации

Позволяют управлять работой кондиционера при приближении к зданию, в котором установлен кондиционер, или удалении от него.

Многоуровневое управление доступом

Позволяет передать права на управление кондиционером другому пользователю приложения Daichi Comfort, например, члену семьи или арендатору.

Сценарии по расписанию

Позволяют установить режим работы кондиционера с заданными параметрами в определенное время.

Для дистанционной работы с мультизональной VRF-системой достаточно установить контроллер на центральном модуле VRF и оплатить подписку за каждый внутренний блок, которым вы хотите управлять с вашего смартфона. Кроме управления всеми внутренними климатическими блоками, доступно подключение к системам управления зданиями (BMS) и умным домом через протоколы MODBUS, BACnet, HDL и KNX.

А если требуется управлять только внутренними блоками VRF-системы, достаточно установить настенный пульт с сенсорным экраном и оплатить подписку.

Для дилеров предусмотрена выплата единоразового вознаграждения за каждый подключенный по подписке внутренний блок на объекте.

^{*} Проверить совместимость с вашей моделью кондиционера можно по ссылке: daichicloud.ru/split-lineup/

Промышленное оборудование Midea, а в особенности чиллеры, отличают постоянное развитие и широкий выбор опций.

В 2023 году компания Midea первой на рынке Китая перешла к массовому производству модульных чиллеров со встроенным гидравлическим модулем, при этом сохранив выгодную цену.

Экономьте до 30% потребляемой электроэнергии за счет инверторной технологии, применяемой в компрессоре, и не беспокойтесь о сложностях монтажа и проектирования благодаря встроенному гидравлическому модулю.

Обозначение моделей

- Бренд производителя
- Класс системы
 - чиллер с воздушным охлаждением
 - С модульный чиллер с воздушным охлаждением конденсатора;
 - W чиллер с водяным охлаждением конденсатора;
 - G мини-чиллер с воздушным охлаждением конденсатора.
- 3 Тип компрессора

и используемая технология

- С компрессор спирального типа постоянной мощности;
- ightharpoonup компрессор спирального типа с плавным регулированием производительности:
- М центробежный безмасляный компрессор с инверторным приводом;
- R компрессор ротационного типа с инверторным приводом;
- **S** винтовой компрессор;
- Т2 центробежный компрессор двухступенчатого сжатия:
- V центробежный компрессор с инверторным приводом.
- Ф Режим работы
 - С только охлаждение;
 - **H** охлаждение или нагрев;
 - F четырехтрубный чиллер
 - (одновременное охлаждение и нагрев).
- Индекс производительности кВт.
- 6 Серия, модификация
- Тип теплообменника

F — затопленный:

- Р пластинчатый;
- S кожухотрубный:
- Т труба в трубе.
- Хладагент
 - **A** R410A;
 - **R** R32; **B** - R134a.

Электропитание

- **1** 1 Ф, 220-240 В, 50 Гц;
- **3** 3 Ф, 380-415 В, 50 Гц;
- **10** 3 Ф, 10 кВ, 50 Гц.

Конструктивные особенности

- A специальное исполнение;
- Е супервысокая эффективность;
- L охлаждение при низкой температуре наружного воздуха;
- **Z** стандартная эффективность;
- **H** высокая эффективность;
- Y сверхвысокая эффективность;
- X инверторный привод компрессора;
- **N** низкошумное исполнение;
- **F** опция реле протока;
- **R** опция частичной рекуперации тепла;
- **В** опция BACnet;
- **D** опция PLC-контроллер;
- опция антикоррозионное покрытие;
- **G** опция защитная решетка конденсатора;
- **T** опция Soft-starter;
- Р встроенный гидравлический модуль;
- P1 встроенный гидравлический модуль high lift;
- P2 встроенный гидравлический модуль super high lift;
- **FC** чиллер с функцией фрикулинг;
- С исполнение в корпусе;
- FCA чиллер с функцией фрикулинг (работа при наружной температуре воздуха до -40°C).

Модельный ряд и производительность

Модульные чиллеры с воздушным охлаждением конденсатора

Компрессор	Хладагент	Тип компрессора	Режим работы	Серия	Изображение	Производительность, кВт
Rotary	R32	Inverter	H/Р тепловой насос	ECO Mini со встроенным гидромодулем MGRH_A-PR1(3)Z	со встроенным гидромодулем	
Rotary	R32	Inverter	H/P тепловой насос	ARCTIC со встроенным гидромодулем MGRH_A-PR3-P	8	■ 17-29 ■ 18-30
Scroll	R32	Inverter	H/P тепловой насос	AQUA THERMAL MCDH_A-PR3		■ 70—164 ■ 75—180
Scroll	R32	Inverter	H/P тепловой насос	AQUA THERMAL со встроенным гидромодулем MCDH_A-PR3-P		■ 70—164 ■ 75—180
Scroll	R410A	on/off	H/P тепловой насос	MACH_A		340–460 355–475
Scroll	R410A	on/off	С/О только охлаждение	MACC_A		■ 340—460
Scroll	R410A	on/off	C/O, H/P 5 режимов работы	4-трубный МССГ_А		■ 276-464 ■ 270-464
Screw	R134a	on/off	С/О только охлаждение	MASC_B-SB3F		■ 400—1692
Screw	R134a	inverter	С/О только охлаждение	Airboost MASC_A-SB3ZXF		286—1732
Centrifugal	R134a	inverter	С/О только охлаждение	Airboost MAG MAMC_A-FB3Y		352—1680

Чиллеры с фрикулингом

Компрессор	Хладагент	Тип компрессора	Режим работы	Серия Изображение		Производительность, кВт
Screw	R134a	inverter	С/О только охлаждение	Airboost Freecooling MASC_A-SB3ZXF-FC		257—1261
Centrifugal	R134a	inverter	С/О только охлаждение	Airboost Freecooling MAG MAMC_A-FB3Y-FC	Genta	352—1680

Модельный ряд и производительность

Чиллеры с водяным охлаждением конденсатора

Компрессор	Хладагент	Тип компрессора	Режим работы	Серия Изображение		Производительность, кВт
Screw	R134a	on/off	С/О только охлаждение	MWSC_C-FB3ZF	d b	■ 306—1929
Screw	R134a	inverter	С/О только охлаждение	MWSC_D-FB3YXF		3 16—1916
Screw	R134a	on/off	H/P тепловой насос	MWSH_B-FB3HF		■ 331—1964

Центробежные чиллеры

Компрессор	Хладагент	Тип компрессора	Режим работы	Серия	Изображение	Производительность, кВт
Centrifugal	R134a	on/off	С/О только охлаждение	MWT2C_B-FB3H		2110-4571
Centrifugal	R134a	on/off	С/О только охлаждение	MWT2C_B-FB10H		4 922—7735
Centrifugal	R134a	inverter	С/О только охлаждение	MWVC_B-FB3H		■ 879—4571
Centrifugal	R134a	on/off	С/О только охлаждение	MWT2C_B-FB3Y		2 110—4571
Centrifugal	R134a	on/off	С/О только охлаждение	MWT2C_B-FB10Y		4 922—7735
Centrifugal	R134a	inverter	С/О только охлаждение	MWMC_B-FB3YA		4 57-703

C/O — только охлаждение H/P — с функцией теплового насоса

Лидерство через инновации: Midea запустила первый в мире ИИ-завод чиллеров

28 марта 2025 года компания Midea Building Technologies (МВТ) представила в Чунцине первый в мире завод по производству чиллеров, где искусственный интеллект задействован на всех этапах производства. Благодаря передовым технологиям интеллектуального производства и устойчивым промышленным практикам этот завод удостоился престижного статуса «фабрики-маяка».

Фабрики-маяки признаны самыми передовыми производственными площадками в мире, олицетворяющими высший уровень интеллектуализации и цифровизации глобальной промышленности. Они задают вектор развития отрасли в сторону высокотехнологичного, умного и экологичного производства.

Уникальность завода МВТ заключается в применении ИИ на всех этапах — от разработки и производства до послепродажного обслуживания.

Завод в Чунцине

Центробежные чиллеры

3 000 шт./г.

Винтовые чиллеры с воздушным охлаждением конденсатора

4 000 шт./г.

Винтовые чиллеры с водяным охлаждением конденсатора

4 000 шт./г.

Холодильные станции

500 шт./г.

Центробежные компрессоры

4 000 шт./г.

106 000 м² 18 продуктовых линеек

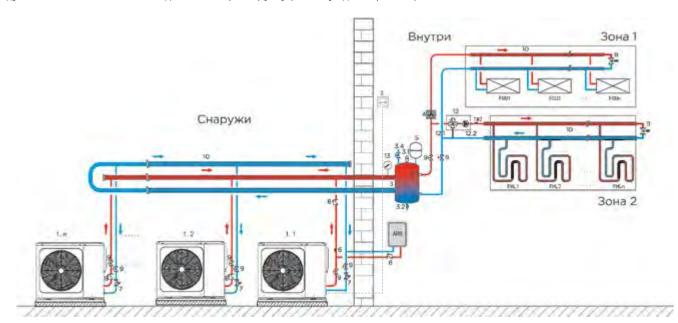
Мини-чиллеры с воздушным охлаждением конденсатора и ротационным инверторным компрессором Серия ECO mini

Мини-чиллеры Midea серии ECO mini обладают низким уровнем шума, они просты в монтаже и техническом обслуживании. Высокая энергоэффективность и надежность обеспечивают низкую стоимость эксплуатации, поэтому они широко используются в жилых помещениях, загородных домах, небольших офисных зданиях, ресторанах и других объектах.

Модельный ряд и производительность

MGRH_A

Модельный ряд


Холодопроизводительность инверторных мини-чиллеров составляет от 5,5 до 17,3 кВт. Эти блоки предназначены для помещений, где требуется горячее или холодное водоснабжение, кондиционирование воздуха, охлаждение хладоносителя в производственных целях.

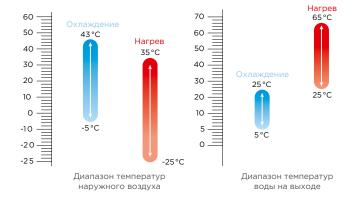
Производительность, кВт		5	7	9	12	14	16	18
220-240 В, 1 фаза, 50 Гц		•	•	•	•	•	•	•
380-415 В, 3 фазы, 50 Гц		-	-	-	•	•	•	-
Напор (макс.), м		9					15	
Водяной насос	Расход, м³/ч	0.40~1.25	0.40~1.25	0.40~2.10	0.70~2.50	0.70~2.75	0.70~3.00	0.70-2.98

Модульная конструкция

Модульная система позволяет объединять чиллеры в группу (максимум до 6 агрегатов).

Обозначение	Сборочная единица	Обозначение	Сборочная единица
1.1	Главный блок	10	Коллектор/распределитель (приобретается на месте)
1.2n	Ведомый блок	11	Перепускной вентиль (приобретается на месте)
2	Система управления пользователя	12	Смесительный узел (приобретается на месте)
3	Буферный резервуар (приобретается на месте)	12.1	SV3: смесительный клапан (приобретается на месте)
3.1	Автоматический воздухоотводчик	12.2	Р_С: циркуляционный насос зоны 2 (приобретается на месте)
3.2	Дренажный клапан	13	Манометр для воды (приобретается на месте)
3.3	Tbt: датчик температуры в верхней части буферного резервуара (опция)	TW2	Датчик температуры воды, зона 2 (опция)
3.4	Заправочный клапан (приобретается на месте)	FCU1n	Фанкойл (приобретается на месте)
4	Р_о: наружный циркуляционный насос (приобретается на месте)	FHL1n	Контур обогрева пола (приобретается на месте)
5	Расширительный бак (приобретается на месте)	30HA 1	В этой зоне система может работать в режимах охлаждения и нагрева
6	T1: датчик температуры на общем выходе воды (опция)	30HA 2	В этой зоне система может работать только в режиме нагрева
7	Фильтр (дополнительная опция)	AHS	Вспомогательный источник тепла (приобретается на месте
8	Обратный клапан (приобретается на месте)		
9	Запорный клапан (приобретается на месте)		

Конструктивные и функциональные особенности



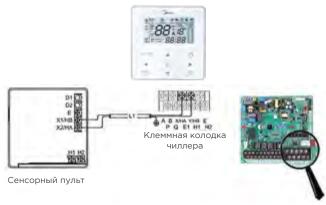
Диапазон рабочих температур

- Широкий диапазон температур наружного воздуха.
- Температура хладоносителя на выходе в режиме охлаждения 5-25°C, а в режиме нагрева 25-65°C.

Простота монтажа

 Мини-чиллеры оснащены встроенным гидравлическим модулем, интегрированным в корпус блока, благодаря этому монтаж сводится к простым операциям, таким как присоединение электропитания, подвод воды и подключение фанкойлов.

Четырехпоточный кассетный блок Компактный четырехпоточный кассетный блок Канальный блок Канальный блок


Подогрев теплых полов

Работа в режиме теплового насоса позволяет подключить чиллер κ системе теплых полов. Функция сушки и предварительного нагрева защищают от деформации напольных покрытий.

Проводной Wi-Fi-пульт KJRH-120K/ BMKO-E

- Входит в стандартный комплект поставки.
- Проводной сенсорный пульт управления с функцией Modbus позволяет изменять настройки и режимы работы чиллера.
- Пульт управления имеет встроенный Wi-Fi-модуль, что предоставляет возможность удаленного мониторинга и управления со смартфона.

Режим работы на время отпуска

Режим для повышения надежности системы и экономии электроэнергии. Чиллер работает в режиме обогрева с низкой температурой воды для предотвращения замерзания хладоносителя во время вашего зимнего отпуска.

Конструктивные и функциональные особенности

R32 FULL DC INVERTER

MGRH_A

Компрессор

Конструкция двухроторного

компрессора производства

Mitsubishi Electric

В инверторных чиллерах используются современные технические решения, обеспечивающие точное поддержание температуры и снижение энергопотребления до 30%, благодаря чему вносится значительный вклад в снижение вредного воздействия на окружающую среду.

 Используется двухроторный инверторный компрессор постоянного тока. Производительность чиллера точно регулируется в соответствии с тепловой нагрузкой.

Высокоэффективный двигатель постоянного тока

- Уникальная конструкция ротора электродвигателя
- Неодимовые магниты высокой плотности
- Статор с уплотненным расположением обмоток
- Широкий диапазон рабочих частот

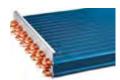
Улучшенная балансировка и чрезвычайно низкий уровень вибраций

- Парные эксцентрики
- Два балансировочных груза

Движущиеся части

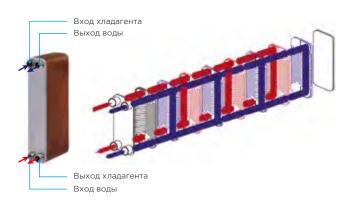
- Оптимальное согласование материалов валов и лопаток
- Оптимизированный привод компрессора
- Высоконадежные подшипники
- Компактная конструкция

Конденсатор


■ Благодаря новой конструкции оребрения теплообменника увеличивается площадь теплообменной поверхности и эффективность теплообмена, снижается электропотребление.

Медные трубки с внутренней накаткой улучшают эффективность теплообмена.

Оребрение со специальным покрытием повышает надежность, защищает от коррозии под действием воздуха, воды и других коррозионно-активных веществ и обеспечивает длительный срок службы теплообменника.



- Многоступенчатая защита, включающая защиту по напряжению, по току, от обмерзания и по протоку воды, обеспечивает безопасную работу системы.
- Инверторные технологии компрессора, насоса встроенного гидравлического модуля и эл. двигателя вентилятора позволяют экономить до 30% электроэнергии.
- Встроенный водяной насос соответствует директиве ErP, являющейся стандартом энергоэффективности класса «А».

Испаритель

- Для стабильной и точной регулировки перегрева установлен электронный регулирующий вентиль (EXV).
- В пластинчатом теплообменнике для передачи тепла от хладагента к воде используются металлические пластины. Среды распределяются по пластинам и контактируют со значительно большей площадью поверхности теплообменника. Это повышает коэффициент теплопередачи и эффективность работы теплообменника.

Возможности использования мини-чиллеров на различных объектах

Производство

Чиллеры активно применяются при производстве пластиковых изделий и упаковки. Инверторные чиллеры Midea идеально подходят для охлаждения технологических линий, экструдеров и прессов, используемых на таких производствах. Расширенный диапазон рабочих температур начиная с -5 °C способствует стабильной работе оборудования в течение года.

Коттеджи

Централизованная система хладоснабжения коттеджа позволяет подготавливать холодную воду для охлаждения помещений коттеджа при помощи всего одного инверторного чиллера Midea, расположенного на улице. Благодаря этому сохраняется внешний вид вашего дома в первозданном состоянии за счет отсутствия ограничений по длинам трасс и перепадам высот между внутренними и наружным блоком. Инверторный компрессор обеспечивает плавный пуск, в результате которого нет высоких пусковых токов, создающих серьезную нагрузку на электрическую систему коттеджа.

Подготовка горячей воды

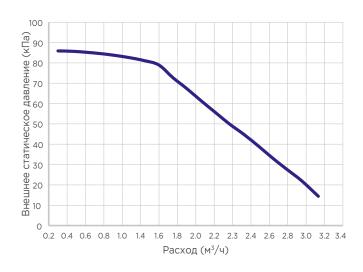
За счет работы в режиме теплового насоса инверторные чиллеры Midea можно подключить к системе теплых полов и теплоснабжению дома. Благодаря тепловому коэффициенту СОР от 3,5 до 4 обогрев вашего дома с помощью чиллера Midea станет экономически выгодным и энергоэффективным. Встроенный гидромодуль позволяет получить полностью готовое к работе изделие.

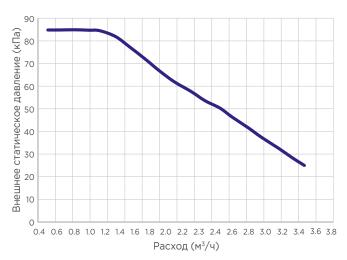
Теплообменные секции приточных установок

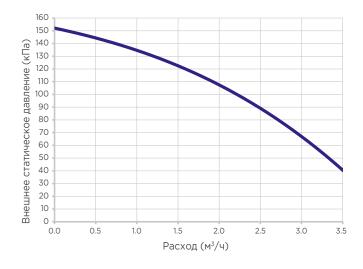
Главной особенностью работы чиллеров совместно с приточными установками является постоянно изменяющаяся температура окружающего воздуха на входе в приточную установку. Благодаря инверторному компрессору и передовой системе автоматизации мини-чиллеры Midea позволяют непрерывно с предельной точностью поддерживать изменяющуюся требуемую холодопроизводительность.

Купели

Для точной регулировки и подержания заданной температуры воды применяются чиллеры. Широкий модельный ряд инверторных чиллеров Midea позволяет подобрать чиллер, идеально подходящий для охлаждения или нагрева воды в купели в соответствии с требованиями заказчика.




Расходо-напорные характеристики встроенного гидравлического модуля


Чиллеры MGRH5-9A-PR1Z

Чиллеры MGRH12-16A-PR1Z / PR3Z

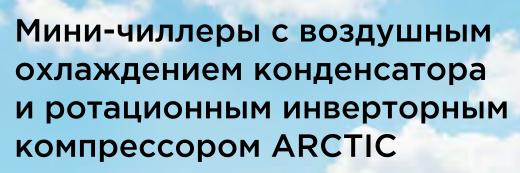
Чиллер MGRH18A-PR1Z

MGRH5-18A-PR1Z MGRH12-16A-PR3Z

Проводной пульт KJRH-120K/BMKO-E c Modbus в комплекте

Модульная система позволяет объединять чиллеры в общий контур

(на один пульт ···= 108 кВт



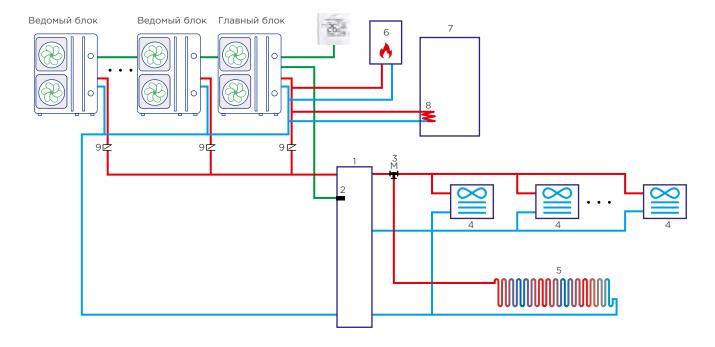
MGRH_A

Модель			MGRH5A-PR1Z	MGRH7A-PR1Z	MGRH9A-PR1Z	MGRH12A-PR1Z	MGRH14A-PR1		
	Производительность	кВт	5.5	7.4	9.0	11.6	13.4		
Охлаждение	Номинальная потребляемая мощность	кВт	1.7	2.3	3.1	3.7	4.6		
	EER		3.25	3.15	2.90	11.6 3.7 3.10 12.5 3.4 3.70 1. 70	2.93		
	Производительность	кВт	6.6	8.5	10.2	12.5	14.5		
Нагрев	Номинальная потребляемая мощность	кВт	1.7	2.2	2.8	3.4	4.1		
	COP		4.0	3.80	3.65	12.5 3.4 3.70 50 70 410 560 100 CTE	3.55		
V	Тип				R32				
Хладагент	КГ		1.25		1	.8			
Электропитание		В, Ф, Гц		220-240, 1, 50					
Уровень звуковой мощности		дБ(А)	60	63	65	70	72		
Габариты блока (В×Ш×	······································	MM	865×1040×410						
Габариты в упаковке (E		MM		970×1190×560					
Масса нетто/брутто		KΓ		87/103		106	/122		
	Водяной насос		В комплекте						
Комплект поставки	Реле протока				В комплекте				
	Расширительный бак				В комплекте - 5 л	11.6 3.7 3.10 12.5 3.4 3.70 1 70 106			
Воляной насес	Напор (макс.)	М			9				
Масса нетто/брутто Водяной насо Комплект поставки Реле протока Расширителы Напор (макс.) Расход	Расход	м³/ч	0.40~1.25	0.40~1.25	0.40~2.10	0.70~2.50	0.70~2.75		
Трубные соединения	Вход/выход воды	дюйм		1		5	P/ ₄		
Диапазон температур	Охлаждение	°C			-5 ~ 43				
окружающей среды	Нагрев	°C	4 0.40-1.25 0.40-1.25 0.40-2.10 0.70-2.5 IM 1 -5 - 43 -25 - 35						
Диапазон температур	Охлаждение	°C			5 ~ 25				
воды на выходе	Нагрев	°C			25 ~ 65	3.7 3.10 12.5 3.4 3.70 50 70 410 660 106 77 410 00 0.70-2.50			

Модель			MGRH16A-PR1Z	MGRH12A-PR3Z	MGRH14A-PR3Z	MGRH16A-PR3Z	MGRH18A-PR1Z
	Производительность	кВт	14.0	11.6	13.4	14.0	17.3
Охлаждение	Номинальная потребляемая мощность	кВт	4.8	3.7	4.6	4.8	6.65
	EER	*	2.90	3.10	2.93	14.0	2.60
	Производительность	кВт	16.2	12.5	14.5	16.2	19.5
Нагрев	Номинальная потребляемая мощность	Вт	4.6	3.4	4.1	4.7	6.19
	COP		3.45	3.70	3.55	14.0 4.8 2.90 16.2 4.7 3.45	3.15
Тип				*	R32		*
Хладагент	КГ		1.8				
Электропитание		В, Ф, Гц	220-240, 1, 50		380-415, 3, 50		220-240, 1, 50
Уровень звуковой мощности		дБ(А)	72	70	72	72	59
Габариты блока (В×Ш	×Г)	ММ		865×10)40×410		865×1068×523
Габариты в упаковке (В×Ш×Г)	ММ		890×1180×560			
Масса нетто/брутто		KΓ		106	/122		111/126
	Водяной насос				В комплекте		*
Комплект поставки	Реле протока				В комплекте	4.8 2.90 16.2 4.7 3.45	
	Расширительный бак				В комплекте - 5 л		
D	Напор (макс.)	М			9		15
Водяной насос	Расход	м³/ч	0.70~3.00	0.70~2.50	0.70~2.75	0.70~3.00	2.98
Трубные соединения	Вход/выход воды	дюйм		5	5/ ₄		11/4
Диапазон температур	Охлаждение	°C		-5 ·	~ 43		+5~+52
окружающей среды	Нагрев	°C		-25	~ 35		-20~+25
Диапазон температур	Охлаждение	°C		5 ~	· 25		+5~+25
воды на выходе	Нагрев	°C		25	~ 65		+25~+60
			1	1			

ПРИМЕЧАНИЕОхлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.
Обогрев: температура горячей воды на выходе 45°C, расход воды = расход воды в режиме охлаждения, температура наружного воздуха 7°C по сухому термометру, 6°C по влажному термометру.

Модельный ряд и производительность



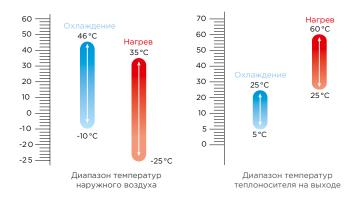
Холодопроизводительность инверторных мини-чиллеров со встроенным гидромодулем составляет от 17 до 30 кВт, 4 типоразмера можно монтировать для работы с фанкойлами в целях технологического охлаждения при использовании на производственных площадках, для нагрева теплоносителя.

Компактная конструкция чиллера с фронтальным выдувом воздуха и уникальные на климатическом рынке типоразмеры позволяют использовать оборудование для помещений, где требуется горячее или холодное водоснабжение, кондиционирование воздуха, охлаждение воды в производственных целях.

Модель	MGRH17A-PR3-P	MGRH21A-PR3-P	MGRH26A-PR3-P	MGRH30A-PR3-P
380-415 В, 3 фазы, 50 Гц	•	•	•	•

■ Модульная конструкция позволяет объединять чиллеры (максимум до 6 агрегатов) в систему.

Обозначение	Сборочная единица
1	Буферный бак (приобретается отдельно)
2	Датчик температуры буферного бака (приобретается отдельно)
3	Вентиль трехходовой (приобретается отдельно)
4	Фанкойл (приобретается отдельно)
5	Контур подогрева пола (приобретается отдельно)
6	Дополнительный источник нагрева воды (приобретается отдельно)
7	Резервуар для воды (приобретается отдельно)
8	Змеевик (приобретается отдельно)
9	Обратный клапан (входит в стандартный комплект поставки чиллера)


Конструктивные и функциональные особенности

MGRH_A

Диапазон рабочих температур

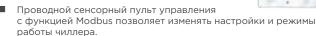
■ Температура воды на выходе из чиллера в режиме охлаждения 5-25°C, а в режиме нагрева 25-60°C.

Технологическое охлаждение

■ Во многих производственных процессах выделяется значительное количество теплоты. Без утилизации этой теплоты срок службы технологического оборудования сокращается, а эффективность производства снижается. Для технологического охлаждения промышленного оборудования могут использоваться чиллеры Midea серии ARCTIC.

Режим работы на время отпуска

 Режим для повышения надежности системы и экономии электроэнергии. Чиллер работает в режиме обогрева с низкой температурой воды для предотвращения замерзания хладоносителя во время вашего зимнего отпуска.


Встроенный гидравлический модуль

- В стандартной комплектации чиллеры оснащены встроенным гидравлическим модулем. Скорость циркуляционного насоса можно изменить.
- Простота монтажа.
- Экономия затрат.
- Уменьшение площади, занимаемой оборудованием.

Проводной Wi-Fi-пульт KJRH-120K/BMKO-E

Пульт управления имеет встроенный Wi-Fi-модуль, что предоставляет возможность удаленного мониторинга и управления со смартфона.

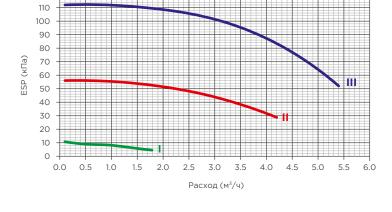
Малошумный вентилятор и двигатель

 Оптимизированная крыльчатка, двигатель с большим крутящим моментом и высоким КПД позволяют добиться высокой эффективности и при этом низкого уровня шума.

Двухроторный инверторный компрессор Mitsubishi Electric

- Парные эксцентрики.
- Два балансировочных груза.
- Оптимизированная конструкция привода компрессора.
- Компактные габариты.
- Улучшенная балансировка и низкий уровень вибраций.

Расходно-напорные характеристики встроенного гидравлического модуля



Обозначения I, II и III указывают на режимы работы водяного насоса:

I — Низкая скорость II — Средняя скорость III — Высокая скорость

- Заводской настройкой по умолчанию является высокий расход воды в системе (III).
- Если расход воды в системе требуется снизить, скорость насоса можно установить на среднюю (II) или низкую (I).

Технические характеристики

Модель			MGRH17A-PR3-P	MGRH21A-PR3-P	MGRH26A-PR3-P	MGRH30A-PR3-P
	Холодопроизводительность	кВт	17.0	21.0	26.0	29.5
Охлаждение	Номинальная потребляемая мощность	кВт	5.6	7.1	9.6	11.6
	EER	-	3.05	2.95	2.70	2.55
	Теплопроизводительность	кВт	18.0	22.0	26.0	30.0
Нагрев	Номинальная потребляемая мощность	кВт	5.1	6.5	8.4	10.4
	COP	-	3.50	3.40	3.10	2.90
V	Тип	-		R	32	*
Хладагент	Заправка	КГ		5	.0	
Электропитание		В, Гц, Ф		380-41	5, 50, 3	
Уровень звуковой м	иощности	дБ(А)	A) 71 73 75 77			
	Габариты блока (Ш×В×Г)		1129×1558×440			*
Габариты в упаковк	e (Ш×В×Г)	ММ	1220×1735×565			
Масса нетто/брутто)	КГ		185.	5/211	
Водяной насос		-		В ком	плекте	
Реле протока				В ком	плекте	
Водяной	Расход (макс.)	М		1	2	
насос	Номинальный расход	м³/ч	3.10	3.78	4.47	5.18
Трубные соединения	Вход/выход воды	-		1-1,	/4"	
Диапазон	Охлаждение	°C		-10	~46	
Реле протока Водяной насос Трубные соединения Диапазон температур окружающей	Нагрев	°C		-25	~35	
	ГВС	°C		-25	~43	
Диапазон	Охлаждение	°C		0~	25	
температуры воды	Нагрев	°C		25	-60	
на выходе	ГВС	°C		30	~60	
Пульт управления	В комплекте	-		KJRH-120	K/BMKO-E	

ПРИМЕЧАНИЕ

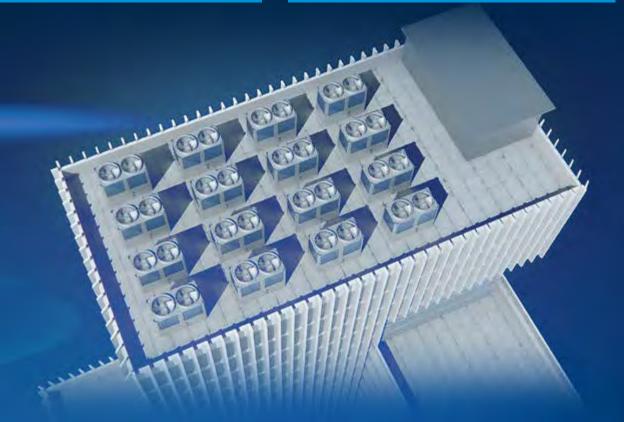
120

........ Охлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.
Обогрев: температура горячей воды на выходе 45°C, расход воды = расход воды в режиме охлаждения, температура наружного воздуха 7°C по сухому термометру, 6°C по влажному термометру.

Модульные инверторные чиллеры Aqua Thermal

Модульные инверторные чиллеры Aqua Thermal — это универсальное оборудование для систем холодо- и теплоснабжения. Конструкция обеспечивает поэтапный ввод в эксплуатацию и равномерную наработку компрессоров.

Модульная конструкция обеспечивает широкий диапазон производительности: от 70 до 2080 кВт.



ВЫГОДА

КОМПАКТНОСТЬ

Снижение затрат на энергопотребление за счет инверторной технологии компрессора

Экономия занимаемой площади

УДОБСТВО ПРОЕКТИРОВАНИЯ

TEXHOЛОГИЯ PLUG AND PLAY

Уникальное техническое решение без аналогов в Китае

Cepuя AQUA THERMAL GM проста в монтаже за счет встроенного гидромодуля

Модельный ряд и производительность

Два типа чиллеров AQUA THERMAL: со встроенным гидромодулем и без — позволяют предложить техническое решение для любого типа проекта. Модульная конструкция с возможностью объединения до 16 агрегатов, с суммарной холодопроизводительностью до 2080 кВт.

Серия AQUA THERMAL

Серия AQUA THERMAL GM

Модель чиллера	MCDH70A-PR3(-P)	MCDH82A-PR3(-P)	MCDH130A-PR3(-P)	MCDH164A-PR3(-P)
Внешний вид				

Модель чиллера (без встроенного гидромодуля)	MCDH70A-PR3	MCDH82A-PR3	MCDH130A-PR3	MCDH164A-PR3
Холодопроизводительность, кВт	70.0	82.0	130.0	164.0
Модель чиллера (со встроенным гидромодулем)	MCDH70A-PR3-P	MCDH82A-PR3-P	MCDH130A-PR3-P	MCDH164A-PR3-P
Холодопроизводительность, кВт	70.0	82.0	130.0	164.0
Характеристики встроенного насоса (расход), м ³ /ч	10.0	10.0	22.0	10.0 × 2
Напор насоса, м	27.1	40.5	16.2	40.5
Встроенный насос, количество, шт.	1	1	1	2

Высокая надежность обеспечивается:

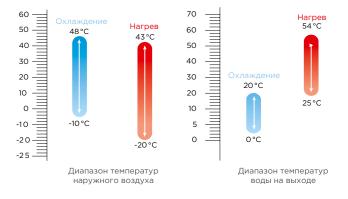
- модульной конструкцией, позволяющей иметь резерв в случае выхода из строя одной из холодильных машин;
- антикоррозионной защитой корпуса и защитой от влаги и пыли всех компонентов;
- 100%-ным заводским контролем сборки и тестирования оборудования.

Легкость монтажа и простота обслуживания

- Компактный размер модулей облегчает транспортировку и монтаж.
- Запуск системы можно осуществлять поэтапно, по мере установки и подключения холодильных машин.
- Монтаж моделей со встроенным гидравлическим модулем значительно упрощен.

Модульная конструкция позволяет объединить до 16 агрегатов с суммарной холодопроизводительностью до 2080 кВт

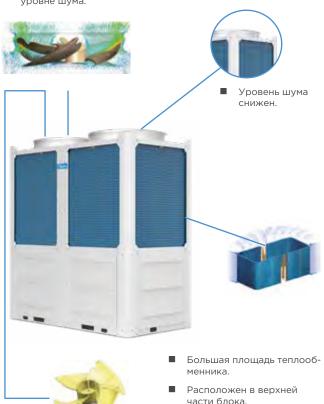
Макс. 2080 кВт


46

Конструктивные и функциональные особенности

DC INVERTER MCDH A

Широкий диапазон рабочих температур



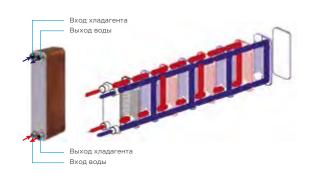
Инверторный компрессор **HITACHI**

Конструкция оптимизирована для снижения шума

- Крыльчатка вентилятора смоделирована с помощью программы трехмерного распределения давления воздуха:
- Крыльчатка обеспечивает большой расход воздуха при низком уровне шума.

- части блока.
- Равномерный поток воздуха.
- Высокоэффективный теплообменник «два U».
- Зубчатая конструкция задней кромки лопасти и вогнутая поверхность уменьшает турбулентность.
- Конструкция с оптимизированным углом установки лопастей улучшает движение воздуха и эффективность вентилятора.

Высокая надежность


В модульной системе блоки работают попеременно в циклическом режиме для выравнивания наработки компрессоров, электродвигателей вентиляторов и других узлов. Это обеспечивает более высокую стабильность, лучшую надежность и более длительный срок службы.

Многоступенчатая защита, включающая защиту по напряжению, току, потоку воды и защиту от обмерзания, обеспечивает безопасную работу системы.

Высокоэффективный пластинчатый теплообменник

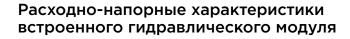
В пластинчатом теплообменнике для передачи тепла от хладагента к воде используются металлические пластины. Среды распределяются по пластинам и контактируют со значительно большей площадью поверхности теплообменника, что повышает коэффициент теплопередачи и эффективность работы.

DC INVERTER

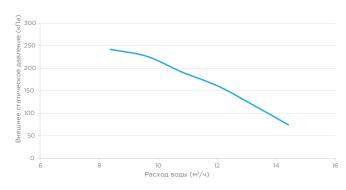
MCDH_A

Модель без вс	троенного	гидромодуля, серия Aqua Th	nermal	MCDH70A-PR3	MCDH82A-PR3	MCDH130A-PR3	MCDH164A-PR3		
Электропитание			В, Ф, Гц	380-415, 3, 50					
	Холодоп	роизводительность	кВт	70	82	130	164		
Охлаждение	Потребл	яемая мощность	кВт	26.8	27.8	50.5	56		
	EER		-	2.61	2.95	2.57	2.93		
	Теплопр	оизводительность	кВт	75	90	138	180		
Нагрев	Потребл	яемая мощность	кВт	23.7	28.1	44.5	57		
	COP		-	3.16	3.2	3.1	3.16		
Пусковой ток			A	46	60	90	120		
Максимальный р	абочий ток		А	54	70	106	141		
Хладагент		-		R	32				
∧ладагент		Заправка	КГ	9	16	15.5	16×2		
Компрессор		Тип	-	Спиральный					
		Количество	оличество шт. 1		2	2	4		
Тип		Тип	-		Трубчатый с алюми	ниевым оребрением			
Конденсатор (воздушная стор	она)	Количество вентиляторов	шт.	2	2	2	4		
(===		Расход воздуха	м³/ч	28 500	35 000	130 50.5 2.57 138 44.5 3.1 90 106 32 15.5 эльный 2 ниевым оребрение 2 50 000 нчатый 65 DN65 22.36 1 92 73 2220×2300×1120 670 2/BMWKO-E -448	70 000		
		Тип	-	Пластинчатый					
		Падение давления воды	кПа	65	75	65	96		
Лспаритель (водяная сторон	a)	Диаметр патрубка (впускной/выпускной)	ММ	DN50	DN50	DN65	DN80		
		Расход воды	M ³ /4	12.04	15	3.1 90 106 R32 15.5 иральный 2 миниевым оребрением 2 50 000 стинчатый 65 DN65 22.36 1 92 73 0 2220×2300×1120 2 670	28.2		
		Макс. давление	МПа	1	1		1		
/ровень звуково	й мощности		дБ(А)	86	83		92		
Уровень звуково	го давления	(1 м)	дБ(А)	69	65		72		
абариты блока	(Ш×В×Г)		ММ	2000×1775×960	2220×2315×1120	2220×2300×1120	2755×2415×2220		
Масса		Транспортировочная	КГ	440	635	670	1400		
Тульт управлени	Я	В комплекте	-	KJRM-120H2/BMWKO-E					
Гемпература нар	ужного	Охлаждение	°C		-10	~48			
воздуха		Нагрев	°C		-20)~43			
Рабочая темпера	тура	Охлаждение	°C		0-	20			
воды		Нагрев	°C		25	~54			

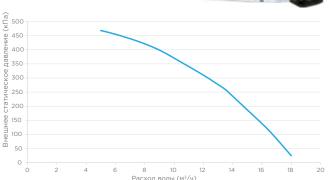
ПРИМЕЧАНИЕОхлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.
Обогрев: температура горячей воды на выходе 45°C, расход воды = расход воды в режиме охлаждения, температура наружного воздуха 7°C по сухому термометру, 6°C по влажному термометру.

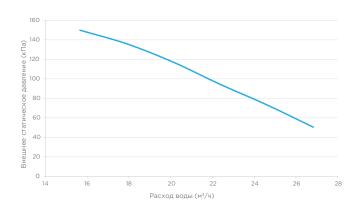

DC INVERTER

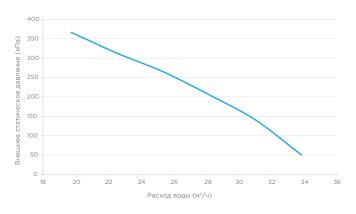
MCDH /	А
--------	---


Модель со встр	ооенным ги	дромодулем, серия Aqua Th	nermal GM	MCDH70A-PR3-P	MCDH82A-PR3-P	MCDH130A-PR3-P	MCDH164A-PR3		
Электропитание			В, Ф, Гц		380-41	5, 3, 50			
	Холодопр	ооизводительность	кВт	70.0 82		130	164		
Охлаждение	Потребля	гребляемая мощность		27.3	28.3	51.4	57.7		
	EER		-	2.55	2.9	2.52	2.82		
	Теплопро	ризводительность	кВт	75.4	90	138.6	181.2		
Нагрев	Потребля	вемая мощность	кВт	24.3	29	45.6	59.1		
	COP		-	3.1	3.1	3.04	3.07		
Јусковой ток			А	49	63	94	126		
1аксимальный ра	бочий ток		А	57	73	110	147		
Тиг		Тип	-		R	32	*		
ладагент		Заправка	КГ	9	16	15.5	16×2		
		Тип	-		Спиральный				
		Количество	шт.	1	2	2	4		
		Тип	-	Трубчатый с алюминиевым оребрен		ниевым оребрением	*		
	'	Количество вентиляторов	шт.	2	2	2	4		
воздушная сторс	эна)	Расход воздуха	м³/ч	28 500	35 000	50 000	70 000		
		Тип	-	Пластинчатый					
1спаритель		Диаметр патрубка (впускной/выпускной)	ММ	DN50	DN50	DN65	DN80		
водяная сторона	1)	Расход воды	м³/ч	12.04	15	22.36	28.2		
		Макс. давление	МПа	1	1	130 51.4 2.52 138.6 45.6 3.04 94 110 12 15.5 Поный 2 ниевым оребрением 2 50 000	1		
	грев Потребляе СОР СКОВОЙ ТОК КСИМАЛЬНЫЙ РАБОЧИЙ ТОК АДАГЕНТ МПРЕССОР НДЕНСАТОР РОЗДУШНАЯ СТОРОНА) СОС СШИРИТЕЛЬНЫЙ БАК ОВЕНЬ ЗВУКОВОЙ МОЩНОСТИ ОВЕНЬ ЗВУКОВОЙ ОВЕЛЕНИЯ (1 м Бариты блока (Ш×В×Г) ССС ЛЬТ УПРАВЛЕНИЯ мпература наружного	Расход	M ³ /4	10	10	22	10×2		
lacoc		Напор	М	27.1	40.5	16.2	40.5		
		Количество	шт.	1	1	1	2		
асширительный	бак	Объем	Л	12	12	24	12×2		
ровень звукової	й мощности		дБ(А)	86	83	93	92		
/ровень звуковог	го давления (1 м)	дБ(А)	69	65		72		
абариты блока (Ш×В×Г)		MM	2000×1775×960	2220×2315×1120	2220×2300×1120	2755×2415×2220		
Масса Транспортировочная		KΓ	475	686	746	1500			
lульт управления	 7	В комплекте	-		KJRM-120H	2/BMWKO-E			
емпература нар	ужного	Охлаждение	°C	†	-10	~48			
оздуха		Нагрев	°C	†	-20)~43			
Рабочая температура Охлаждение		Охлаждение	°C		0~	20			
воды	31	Нагрев	°C		25	~54			

ПРИМЕЧАНИЕОхлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.
Обогрев: температура горячей воды на выходе 45°C, расход воды = расход воды в режиме охлаждения, температура наружного воздуха 7°C по сухому термометру, 6°C по влажному термометру.


DC INVERTER MCDH A


MCDH70A-PR3-P


MCDH82A-PR3-P

MCDH130A-PR3-P

MCDH164A-PR3-P

Адаптация оборудования под потребности рынка

Модельный ряд и производительность

MACH_A
MACC_A

Модельный ряд

Высокопроизводительные чиллеры Midea со спиральным компрессором и воздушным охлаждением конденсатора включают модули 340 и 460 кВт. Можно объединить до 8 модулей, при этом общая холодопроизводительность может достигать 3680 кВт.

Модуль 340 кВт

Модуль 460 кВт

Маркировка	MACH340A-SA3A	MACH460A-SA3A	MACC340A-SA3A	MACC460A-SA3A
Холодопроизводительность, кВт	340	460	340	460
Теплопроизводительность, кВт	355	475	-	-

Особенность комбинации модулей

Обдув воздухом «V»-образного теплообменника с боковой стороны позволяет размещать модули-чиллеры вплотную друг к другу, что значительно экономит место.

Тепловой насос МАСН А

Безопасные для окружающей среды

Доступна опция низкошумное исполнение

Гибкая установка

Широкий диапазон производительности при модульном объединении

Интеллектуальное управление

Конструктивные и функциональные особенности

R410A

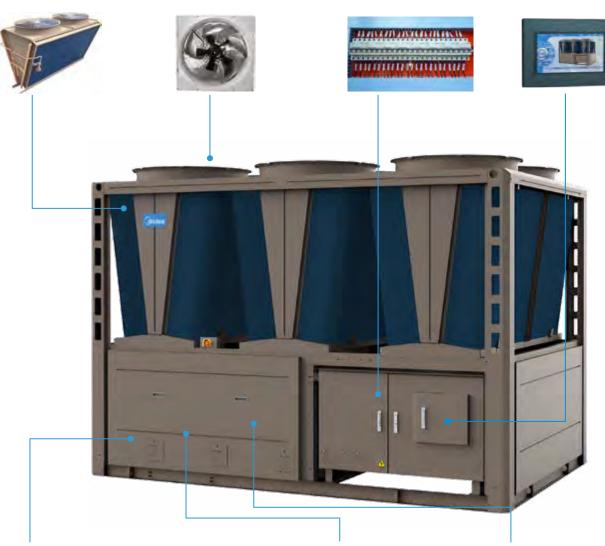
SCROLL

MACH_A MACC_A

V-образный теплообменник

V-образный теплообменник с равномерным потоком воздуха и высокой эффективностью.

Вентилятор и двигатель


Высокая производительность по воздуху, оптимизированная форма лопастей снижает уровень шума.

Блок управления

В электрическом щите используются компоненты ведущих производителей. Блок расположен на фронтальной части чиллера для удобства монтажа и обслуживания.

Сенсорный экран

Большой 7-дюймовый цветной сенсорный экран входит в стандартную комплектацию.

Испаритель

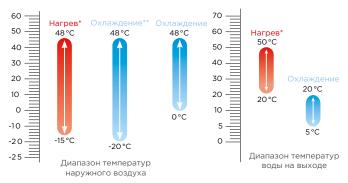
Кожухотрубный испаритель со спиральными перегородками на 10% увеличивает эффективность теплообмена.

Отделитель жидкости

Отделитель жидкости защищает компрессор от влажного хода и гидроудара.

Компрессор

Высокоэффективный компрессор Danfoss.

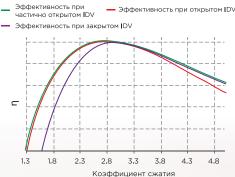

Экологическая безопасность

■ R410A — это экологически безопасный хладагент, не содержащий хлора и не разрушающий озоновый слой (ОDP - 0).

Конструктивные и функциональные особенности

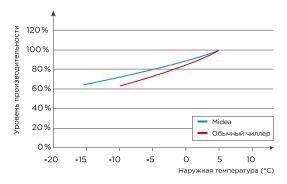
SCROLL MACH A MACC A

Широкий диапазон рабочих температур



- * Только для серии MACH A-SA3A.
- ** Только для моделей с опцией низкотемпературного комплекта.

Энергосбережение


Компрессор имеет промежуточный нагнетательный клапан (IDV). Система работает эффективно при любом коэффициенте сжатия хладагента в компрессоре.

Комфортный обогрев*

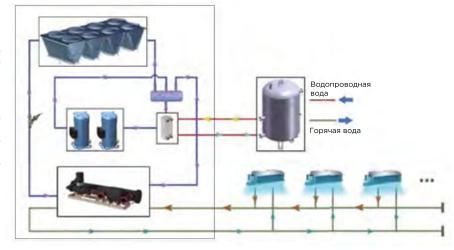
- Передовая технология управления коэффициентом сжатия обеспечивает высокую производительность и стабильность отопления при низкой температуре наружного воздуха.
- Снижение производительности обогрева при температуре -15°C составляет не более 38 %.
- Интеллектуальный процесс размораживания устраняет потери энергии.

Низкий уровень шума

- Высокая эффективность при низком уровне шума.
- Конструкция и форма профиля вентилятора оптимизированы. Гарантированы хорошие аэродинамические характеристики: слабый шум при высоком расходе воздуха, улучшение тепло-
- Защитный кожух компрессора снижает уровень шума на 3—5 дБ(А) (опция).

Компрессор с защитой Компрессор с низким уровнем шума от шума (опция)

Опциональные возможности


R410A SCROLL

MACH_A MACC A

Рекуперация тепла (опция)

Чиллеры с воздушным охлаждением в режиме охлаждения сбрасывают в атмосферу большое количество тепла, которое никак не используется. Устройство для утилизации теплоты позволяет подготавливать воду для ГВС без финансовых затрат. Вода нагревается до 60°С, тепло при этом используется рационально.

Такая возможность особенно подходит для отелей, больниц, бассейнов, производственных объектов и т. д., которые одновременно требуют охлаждения и горячего водоснабжения для комфортных условий проживания или производственных процессов.

Встроенный гидромодуль (опция)

- Встроенные гидравлические модули включают все необходимые компоненты, такие как водяной насос, фильтр, расширительный бак для воды, предохранительный клапан, воздухоотводчик, манометр и реле протока.
- Современное надежное трубное соединение Victaulic упрощает монтаж и снижает вибрацию

Система управления

Панель управления

- Панель управления с удобным интерфейсом позволяет эффективно управлять чиллером и отслеживать параметры его работы.
- Цветной дисплей с диагональю 7 дюймов.
- На экране отображаются заданные значения различных параметров и опций: температура воды в разных точках, давление фреонового контура, информация о рабочем/аварийном состоянии насоса, компрессоров, вентиляторов, таймер.
- В реальном времени можно отследить коды ошибок, по запросу доступна история статистических данных.
- Управление на месте или дистанционно.
- Функции управления: настройка управления по температуре воды на выходе, интеллектуальное управление размораживанием воздушного теплообменника, управление уровнем тепловой нагрузки, переключение ведущий/ведомый и др.

Критерии обеспечения безопасности

■ Предусмотрены следующие автоматические защиты: от высокого или низкого давления хладагента, от перегрузки компрессора, от снижения расхода хладоносителя, от высокой температуры нагнетания, защита по коэффициенту сжатия и др.

R410A SCROLL

MACH_A MACC_A

Тепловой насос

				Базовые	е модули -	Комбинаци	и при объединени МАСН_ASA3A	и модулей
Модель				MACH340A- SA3A	MACH460A- SA3A	MACH680A- SA3A	MACH800A- SA3A	MACH920A- SA3A
	Холодопроизводительнос	ть	кВт	340.0	460.0	680.0	800.0	920.0
	Потребляемая мощность ((охлаждение)	кВт	102.5	138.0	205.0	240.5	276.0
	EER			3.31	3.33	3.31	3.33	3.33
Номинальный	IPLV			4.81	4.72	4.81	МАСН800A- SA3A 800.0 240.5 3.33 4.76 830.0 239.5 3.47 240.0 й компрессор 2 1 1 2 2 2 e 38 18 38 38 38 38 38 38 50 175.4/236.1 589.0/673.0 257.7/343.6 Внутренней накаткой рофильным покрытие 14 20000×14 1.300×14 1.300×14 1.317.6 63.0 DN125/DN125	4.72
параметр	Теплопроизводительность кВт			355.0	475.0	710.0	830.0	950.0
	Потребляемая мощность (кВт	102.0	137.5	204.0		275.0
	COP	(1141 605)	.1	3.48	3.45	3.48		3.45
	Система частичной регене	ерации теппа*	кВт	102.0	138.0	204.0		276.0
	Тип	грации тепла		102.0	11		.1	.1270.0
	1711	Система 1		2	1	2		2
Компрессор		Система 2		1	2	1		2
Компрессор	Количество	Система 3			-	2		2
		Система 3				1		2
D		Система 4		ļ	Il		-1	.1
-еі улирование п	роизводительности			ļ		Ступенчатоє	.	
	Тип				· · · · · · · · · · · · · · · · · · ·	R410A		
		Система 1	КГ	38	38	38		38
Хладагент	Заправка	Система 2	КГ	18	38	18	18	38
	Campabila	Система 3	КГ	-	-	38	38	38
		Система 4	кг	-	-	18	38	38
Электропитание			В, Ф, Гц		,	380-400, 3, 5	0	.,
Номинальный то	K		A	175.4	236.1	175.4/175.4	175.4/236.1	236.1/236.1
Пусковой ток			A	589.0	673.0	589.0/589.0	589.0/673.0	673.0/673.C
Макс. рабочий то	ок		А	257.7	343.6	257.7/257.7	257.7/343.6	343.6/343.6
2008/4/11/14	Тип							
Воздушный	Количество вентиляторов	,		6	8	12	14	16
теплообменник	Расход воздуха	Расход воздуха м³/ч		20000×6	20000×8	20000×12	20000×14	20000×16
	Потребляемая мощность д	двигателя	кВт	1.300×6	1.300×8	1.300×12	1.300×14	1.300×16
	Тип			Кожухотрубный				
	Расход воды				79.12	117.0	137.6	158.2
	Перепад давления		кПа	63.0	63.0	63.0	63.0	63.0
Водяной теплообменник	Диаметр присоединителы трубопровода	НОГО	ММ	DN125	DN125	DN125/DN125	DN125/DN125	DN125/DN12
	Максимальное рабочее да	вление	кПа			1000		
	Коэффициент загрязнени	a	M².°C/			0.018		
			кВт					
	Тип				TI		.,	
	Количество		· [1	1	2	2	2
	Потребляемая мощность і (средний напор) Потребляемая мощность і		кВт	7.5	11	7.5/7.5	7.5/11	11/11
	напор) Напор (средненапорный н		кВт	11	15	11/11	11/15	15/15
Встроенный гидравлический модуль (опция)	номинальный расход) Напор (высоконапорный і		кПа	198.0	223.4	198.0/198.0		223.4/223.4
.одуль (опция)	номинальный расход)		кПа	304.8	309.0	304.8/304.8		309.0/309.0
	Емкость расширительного		Л	80	80	80/80	80/80	80/80
	Макс. давление на сторон (со встроенным гидромод	дулем)	кПа		ŢI	1000	-	
	Диаметр присоединительного трубопровода (со встроенным мм DN125 DN125 DN гидравлическим модулем)	DN125/DN125	DN125/DN125	DN125/DN125				
	Тип		.,		П.	пастинчатый теплос	обменник	
Теплообменник для частичной	Расход воды		м³/ч	5.8	7.9	5.8/5.8	5.8/7.9	7.9/7.9
для частичной рекуперации	Перепад давления на стор	оне воды	кПа	11.3	12.8	11.3/11.3	11.3/12.8	12.8/12.8
тепла (опция)	Диаметр присоединителы трубопровода	НОГО	ММ	DN50	DN50	DN50/DN50	DN50/DN50	DN50/DN50

ПРИМЕЧАНИЕ

Охлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.
Обогрев: температура горячей воды на выходе 45°C, расход воды = расход воды в режиме охлаждения, температура наружного воздуха 7°C по сухому термометру, 6°C по мокрому термометру.

R410A SCROLL

MACH_A MACC A

W			Базовые модули		Комбинации при объединении модулей MACH_ASA3A		
Модель -		MACH340A- SA3A	MACH460A- SA3A	MACH680A- SA3A	MACH800A- SA3A	MACH920A- SA3A	
Габариты блока	Длина	ММ	3530	4700	7060	8230	9400
	Ширина	MM	2300	2300	2300	2300	2300
	Высота	MM	2500	2500	2500	2500	2500
	Масса транспортировочная	КГ	2900	3870	5800	6770	7740
	Масса эксплуатационная	КГ	3000	4020	6000	7020	8040

- 1. Охлаждение: температура охлажденной воды на выходе 7°С, расход воды = холодопроизводительность × 0,172 м³ / (ч кВт), наружная температура окружающей среды 35°C по сухому термометру. Нагрев: температура горячей воды на выходе 45°C, расход воды в режиме охлаждения, наружная температура окружающей среды составляет 7°C по сухому термометру / 6°C по мокрому термометру. Частичная рекуперация тепла: температура горячей воды на входе / выходе = 40/55°C, температура охлажденной воды на выходе 7°C, расход воды = холодопроизводительность × 0,172 м³/ (ч • кВт), наружная температура окружающей среды 35°C по сухому термометру.

 2. Расчеты IPLV в соответствии со стандартными характеристиками (в соответствии с АНRI 550/590).
- 3. Частичная рекуперация тепла опция, добавление влияет на вес устройства и другие параметры. Пожалуйста, проконсультируйтесь с техническим персоналом Даичи для получения более подробной информации.
- 4. Встроенный гидравлический модуль устанавливается опционально. Параметры в приведенной выше таблице (потребляемая мощность охлаждения, потребляемая мощность нагрева, номинальный ток, пусковой ток, максимальный рабочий ток) не включают параметры водяного насоса встроенного гидравлического модуля. Пожалуйста, проконсультируйтесь с техническим персоналом Даичи для получения более подробной информациі
- 5. В результате постоянного совершенствования изделий их параметры могут быть изменены, пожалуйста, обратитесь за консультацией и расчетом к техническому персоналу или к заводским параметрам конкретного чиллера.

R410A

SCROLL

MACH_A MACC_A

Только охлаждение

Молопь			Базо	вые модули	Комбинации при объединении модулей МАСС_ASA3A					
Модель			MACC340 SA3A	MACC460A- SA3A	MACC680A- SA3A	MACC800A- SA3A	MACC920A			
	Холодопроизводительность	KE	340.0	460.0	680.0	800.0	920.0			
	Потребляемая мощность (охлаждение) к		3т 102.5	138.0	205.0	240.5	276.0			
Номинальный	EER		3.32	3.33	3.32	3.33	3.33			
араметр	IPLV		4.813	4.721	4.813	4.759	4.721			
	Система частичной рекуперации тепла* кВт		Вт 102.0	138.0	204.0	240.0	276.0			
	Тип			Герметичный спиральный компрессор						
	Система 1		2	2	2	2	2			
Сомпрессор	Систе	 ма 2	1	2	1	1	2			
	Количество Систе				2	2	2			
	Систе			_	1	2	2			
егулирование п	роизводительности			l	Ступенчато	-l	-			
	Тип				R410A					
	Систе	ма 1 к	г 38	38	38	38	38			
(ладагент	Систе			38	18	18	38			
ладагент	Заправка Систе				38	38	38			
	Систе				18	38	38			
Электропитание		В, Ф		2761	380-400, 3,		276 1/276 1			
Номинальный тог	K 			236.1	175.4/175.4	175.4/236.1	236.1/236.1			
Пусковой ток Макс. рабочий ток		A		673.0 343.6	589.0/589.0	589.0/673.0	673.0/673.0			
лакс. расочии те			257.7	257.7 343.6 257.7/257.7 257.7/343.6 343.6/343.6 Трубки с высокоэффективной внутренней накаткой						
	Тип			и алюминиевое оребрение с гидрофильным покрытием						
Воздушный	Количество вентиляторов		6	8	12	14	16			
теплообменник	Расход воздуха		/u 20000×6	6 20000×8	20000×12	20000×14	20000×16			
	Потребляемая мощность двигателя		3т 1.300×6	1.300×8	1.300×12	1.300×14	1.300×16			
	Тип /		′	Кожухотрубный						
	Расход воды		/4 58.48	79.12	117.0	137.6	158.2			
	Перепад давления		la 63.0	63.0	63.0	63.0	63.0			
Водяной еплообменник	Диаметр присоединительного грубопровода		м DN125	DN125 DN125 DN125/DN125 DN125/DN						
	Максимальное рабочее давление кПа		la	1000						
	Коэффициент загрязнения	M².°C	/кВт	0.018						
	Тип			Одно	ступенчатый центро	обежный насос				
	Количество		1	1	2	2	2			
	Потребляемая мощность насоса (средний напор)		Вт 7.5	11	7.5/7.5	7.5/11	11/11			
	Потребляемая мощность насоса (в напор)	ысокий кЕ	3т 11	15	11/11	11/15	15/15			
Встроенный идравлический	Напор (средненапорный насос/ номинальный расход)	кГ	la 198.0	223.4	198.0/198.0	198.0/223.4	223.4/223.4			
модуль (опция)	Напор (высоконапорный насос/ номинальный расход) кПа			309.0	304.8/304.8	304.8/309.0	309.0/309.0			
	Емкость расширительного бака л									
	Макс. давление на стороне воды (со встроенным гидромодулем) кПа		la		1000		.,			
	Диаметр присоединительного трубопровода (со встроенным гидравлическим модулем)	М	м DN125	DN125	DN125/DN125	DN125/DN125	DN125/DN12			
	Тип			Γ	1 1ластинчатый тепло	обменник				
Геплообменник	Расход воды	M ³ ,	/u 5.8	7.9	5.8/5.8	5.8/7.9	7.9/7.9			
іля частичной рекуперации	Перепад давления на стороне воды			12.8	11.3/11.3	11.3/12.8	12.8/12.8			
тепла (опция)	Диаметр присоединительного трубопровода	м		DN50	DN50/DN50	DN50/DN50	DN50/DN50			
	.1:.5				1	.1	.1			

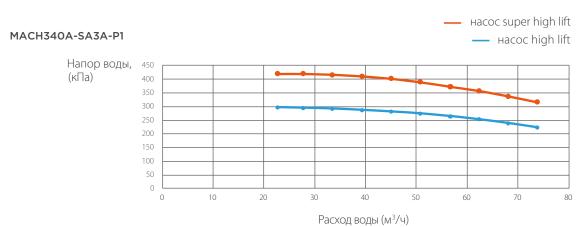
ПРИМЕЧАНИЕ

Охлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.

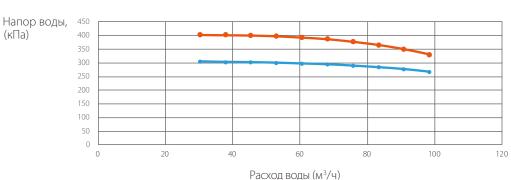
R410A SCROLL

MACH_A MACC A

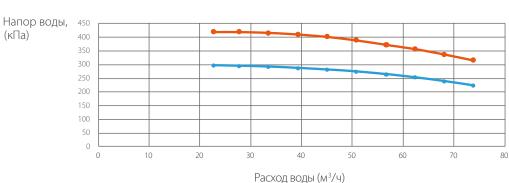
V			Базовые модули		Комбинации при объединении модулей MACC_ASA3A		
модель		MACC340A- SA3A	MACC460A- SA3A	MACC680A- SA3A	MACC800A- SA3A	MACC920A- SA3A	
Габариты блока	Длина	мм	3530	4700	7060	8230	9400
	Ширина	ММ	2300	2300	2300	2300	2300
	Высота	ММ	2500	2500	2500	2500	2500
	Масса транспортировочная	кг	2900	3870	5800	6770	7740
	Масса эксплуатационная	KΓ	3000	4020	6000	7020	8040

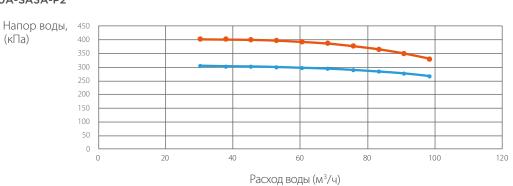

ПРИМЕЧАНИЕ

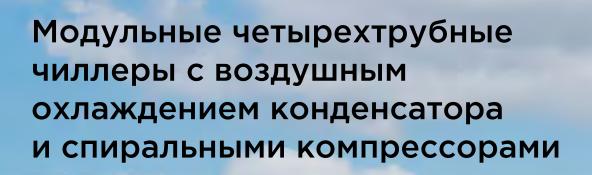
- 1. Охлаждение: температура охлажденной воды на выходе 7°C, расход воды = холодопроизводительность × 0,172 м³ / (ч кВт), наружная температура окружающей среды 35°C По сухому термометру. Нагрев: температура горячей воды на выходе 45°C, расход воды = расход воды в режиме охлаждения, наружная температура окружающей среды составляет 7°C по сухому термометру / 6°C По мокрому термометру. Частичная рекуперация тепла: температура горячей воды на входе / выходе = 40/55°C, температура охлажденной воды на выходе 7°C, расход воды = холодопроизводительность × 0,172 м³/ (ч кВт), наружная температура окружающей среды 35°C По сухому термометру.
- 2. Расчеты IPLV в соответствии со стандартными характеристиками (в соответствии с AHRI 550/590).


 3. Частичная рекуперация тепла опция, добавление влияет на на вес устройства и другие параметры. Пожалуйста, проконсультируйтесь с техническим
- персоналом Даичи для получения более подробной информации. 4. Встроенный гидравлический модуль устанавливается опционально. Параметры в приведенной выше таблице (потребляемая мощность охлаждения, потребляемая мощность нагрева, номинальный ток, пусковой ток, максимальный рабочий ток) не включают параметры водяного насоса встроенного гидравлического модуля. Пожалуйста, проконсультируйтесь с техническим персоналом Даичи для получения более подробной информации.
- 5. В результате постоянного совершенствования изделий их параметры могут быть изменены, пожалуйста, обратитесь за консультацией и расчетом к техническому персоналу или к заводским параметрам конкретного чиллера.

Расходно-напорные характеристики насоса встроенного гидромодуля (опция)




MACH460A-SA3A-P2



MACH340A-SA3A-P1

MACH460A-SA3A-P2

Модельный ряд и производительность

В модельный ряд модульных чиллеров Midea входят 3 базовые модели холодопроизводительностью 276, 368 и 464 кВт, четырехтрубная схема которых позволяет с высокой эффективностью работать в трех режимах: только охлаждение / только нагрев / одновременные охлаждение и нагрев. Таким образом, благодаря одной модульной холодильной машине Midea можно одновременно закрыть потребность и в теплоснабжении, и в холодоснабжении объекта.

Серия МССГ_А

Суммарная холодопроизводительность до 7 424 кВт при модульном объединении. Суммарная теплопроизводительность до 7 434 кВт при модульном объединении.

Централизованное управление несколькими блоками

 Управление модульной системой, содержащей до 16 чиллеров, осуществляется с помощью одной панели управления.

Наработка по времени

 Время работы каждого блока отслеживается и контролируется для продления срока службы всей системы.

Надежность

 Модульная конструкция позволяет иметь резерв в случае выхода из строя одной из машин.

Энергоэффективность

 Загрузка и разгрузка модульной системы контролируется интеллектуально на основе целевой температуры.

Режимы работы

MCCF A

Новый универсальный 4-трубный чиллер предназначен для одновременного нагрева и охлаждения воды в системах кондиционирования воздуха. Две трубы используются для подвода и отвода охлажденной воды из чиллера и еще две трубы — для подвода и отвода горячей воды. Чиллер содержит 4 независимых холодильных контура, каждый из которых может работать либо в режиме только охлаждение, либо в режиме только нагрев, либо в комбинированном режиме, обеспечивая одновременное охлаждение одного потока воды и нагрев другого потока воды.

Для обеспечения различных режимов работы чиллера каждый холодильный контур содержит компрессор, два расширительных вентиля, четырехходовой клапан и три теплообменных аппарата, которые выполняют функции либо испарителя, либо конденсатора в зависимости от режима работы.

В режиме «только охлаждение» функцию испарителя выполняет кожухотрубный теплообменник, в котором кипящий фреон охлаждает воду. В таком режиме функцию конденсатора выполняет теплообменник «фреон — воздух», в котором тепло от фреона отводится наружным воздухом. В режиме «только нагрев» функцию испарителя выполняет теплообменник «фреон — воздух», в котором тепло от наружного воздуха передается фреону. Функцию конденсатора выполняет второй кожухотрубный теплообменник, в котором вода нагревается, получая тепло от фреона. В комбинированном режиме испарителем и конденсатором служат два кожухотрубных теплообменника. В испарителе происходит охлаждение одного потока воды, а в конденсаторе одновременно осуществляется нагрев другого потока воды.

Встроенная система автоматики обеспечивает автоматическое переключение контуров в различные режимы работы в зависимости от поставленной задачи.

Одновременное охлаждение + нагрев Трубчато-пластинчатый 4-ходовой Теплообменник 4-ходовой Трубчато-пластинчатый теплообменник клапан со стороны клапан теплообменник горячей воды ЭРВ ЭРВ Отделитель Отделитель жидкости жидкости ЭРВ ЭРВ Теплообменник со стороны охлаждаемой воды Компрессор Компрессор Линия ВД Линия НД Не используется

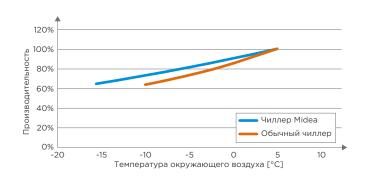
ПРИМЕЧАНИЕ

Для удобства отображения на схеме показаны две системы спиральных компрессоров, но фактически установка оснащена четырьмя спиральными компрессорами.

Конструктивные и функциональные особенности

MCCF_A

Пять режимов применения четырехтрубного чиллера Midea показаны на изображении ниже. Интеллектуальная система управления автоматически распределяет нагрузку между охлаждением и обогревом. Баланс и быстрое изменение производительности, благодаря контролю параметров подготавливаемого теплоносителя, в сравнении с системами рекуперации тепла позволяют быстрее реагировать на изменяющуюся нагрузку и точнее поддерживать параметры жидкостей на выходе из чиллера.

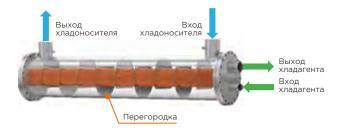

Широкий рабочий диапазон

- Диапазон температур окружающей среды составляет от -15 до +48°С в режимах охлаждения / обогрева / охлаждения и обогрева.
- Рабочий диапазон чиллера на 20% больше, чем у обычного воздушного теплового насоса.

Рабочий диапазон 4-трубного чиллера в режиме охлаждения Рабочий диапазон 4-трубного чиллера в режиме нагрева Рабочий диапазон 4-трубного чиллера в режиме охлаждения + нагрев Рабочий диапазон обычного чиллера в режиме охлаждения режиме охлаждения Рабочий диапазон обычного чиллера в режиме нагрева 10 0 10 20 30 40 50 Температура окружающего воздуха [°C]

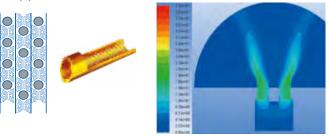
Высокая эффективность режима нагрева

- Высокая эффективность в режиме нагрева и усовершенствованная технология управления соотношением давлений обеспечивают бесперебойную и стабильную работу на нагрев в условиях низких температур окружающего воздуха в холодный сезон.
- Интеллектуальный режим размораживания позволяет избежать потерь энергии, когда в размораживании нет необходимости.



Конструктивные и функциональные особенности

MCCF A


Высокоэффективный кожухотрубный испаритель

- Уникальная технология распределения жидкости на входе для увеличения коэффициента теплопередачи и повышения эффективности теплопередачи.
- Эффективность на 10% выше, чем у обычных кожухотрубных теплообменников.
- Съемные торцевые крышки позволяют получить доступ к трубкам теплообменника для технического обслуживания.
- Конструкция обеспечивает высокую эффективность возврата масла.

Высокоэффективный V-образный конденсатор

- Регулируемый расход воздуха, обеспечиваемый двухскоростным двигателем, позволяет точно поддерживать давление конденсации.
- Оптимизированная конструкция ламелей повышает эффективность теплопередачи.
- Медные трубы с внутренним оребрением позволяют интенсифицировать теплообмен со стороны холодильного агента.
- Изогнутый трапециевидный трубчато-пластинчатый теплообменник увеличивает теплообменную площадь, повышая эффективность.

Энергосбережение

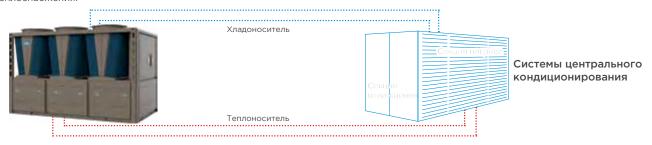
Компрессор имеет промежуточный нагнетательный клапан (IDV). Система работает эффективно при любом коэффициенте сжатия хладагента в компрессоре.

- Эффективность при частично открытом IDV
 Эффективность при открытом IDV
- 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 Коэффициент сжатия

Низкий уровень шума

- Низкошумные комплектующие и опция снижения шума в сумме позволяют снизить уровень звукового давления от чиллера до 72—75 дБ(A).
- Защитный кожух компрессора (опция) снижает уровень шума на 3—5 дБ(A).

Компрессор с низким уровнем шума



Компрессор с защитой от шума (опция)

Основные и опциональные возможности

MCCF A

При использовании одного чиллера потребители могут быть одновременно обеспечены как холодной, так и горячей водой, что значительно снижает потребление энергии и капитальные затраты на реализацию систем охлаждения и обогрева теплоносителей. Объединение данных процессов в одной холодильной машине позволяет минимизировать потери и максимально увеличить эффективность работы систем хладо-и теплоснабжения.

Антикоррозионное исполнение (опция):

- алюминиевое оребрение с дополнительным защитным покрытием;
- элементы корпуса выполнены из оцинкованного металла с защитным слоем порошковой краски;
- рама имеет специальное антикоррозионное покрытие;
- вал вентилятора выполнен из нержавеющей стали, ограждающие конструкции вентилятора выполнены из оцинкованной стали с защитным слоем порошковой краски;
- элементы эл. шкафа покрыты слоем антикоррозионного спрея, все крепежные элементы панели управления (не используемые для токопроводящих частей) выполнены из нержавеющей стали, а плата управления покрыта влагостойким маслом.

Система управления

В системе управления использованы собственные разработки компании Midea. Система управления осуществляет мониторинг параметров и диагностику неисправностей по 32 параметрам. Автоматика системы и многочисленные датчики обеспечивают защиту по давлению, уровню содержания хладагента и масла, не допускают перегрузки двигателя и замерзания теплоносителей. Контроллер позволяет вести запись основных текущих параметров, историю тепловой нагрузки, сбоев в работе и их причин. Имеется функция восстановления параметров, предшествующих выключению оборудования. При отсутствии протока теплоносителя работа устройства автоматические останавливается. Обеспечена возможность интеграции чиллера в систему управления зданием по протоколу связи ModBus.

- Трехуровневая настройка пароля для предотвращения несанкционированного доступа;
- функция памяти при отключении питания;
- сенсорный дисплей;
- отображение контролируемых значений температуры в реальном времени:
- отображение режима работы;
- подключение по протоколу ModBus.

SCROLL

Μ	C	C	F	•	<u> </u>	4

Модель				MCCF280A-SA3H	MCCF370A-SA3H	MCCF460A-SA3H	
	Холодопроизводитель	ность	кВт	276.1	368.4	464.0	
Только охлаждение	Потребляемая мощность (охлаждение)		кВт	86.0	112.5	139.6	
	EER		-	3.21	3.27	3.32	
	IPLV		-	3.70	3.85	3.89	
	Теплопроизводительность		кВт	270.7	355.8	464.6	
Только нагрев	Потребляемая мощнос	кВт	81.7	106.5	138.7		
	COP		-	3.31	3.34	3.34	
	Холодопроизводитель	ность	кВт	265.9	350.9	441.9	
D.,	Теплопроизводительн	ость	кВт	349.0	457.8	565.4	
Охлаждение + нагрев	Потребляемая мощнос	сть (охл. + нагрев)	кВт	78.8	103.5	128.8	
	TER		-	7.80	7.81	7.82	
	Тип		/	Кож	ухотрубный теплообме	енник	
Геплообменник на	Расход воды		м³/ч	47.49	63.36	79.81	
стороне охлажденной	Перепад давления		кПа	61.8	57.7	61.6	
воды	Диаметр присоединит	ельного трубопровода	ММ	DN80	DN125	DN125	
	Максимальное рабочее давление		МПа		1.0		
	Тип		/	Кож	Кожухотрубный теплообменник		
	Расход воды		м³/ч	60.03	78.74	97.25	
Геплообменник на стороне горячей воды	Перепад давления		кПа	106.0	86.1	88.8	
лороне горячей воды	Диаметр присоединительного трубопровода		ММ	DN80	DN125	DN125	
	Максимальное рабочее давление		МПа		1.0		
	Тип		/	Трубча	Трубчато-ребристый теплообменник		
Воздушный	Количество вентиляторов		шт.	4	6	8	
геплообменник	Расход воздуха		м³/ч	20000×4	20000×6	20000×8	
	Потребляемая мощность двигателя		кВт	1.3×4	1.3×6	1.3×8	
	Тип	/	Г	ерметичный спиральны	ый		
Компрессор	Количество		шт.	4	4	4	
	Количество холодильных контуров		шт.	4	4	4	
	Тип		/		R410A		
		Контур 1	КГ	10	10	20	
Кладагент	06	Контур 2	КГ	10	10	20	
	Объем заправки	Контур 3	КГ	10	20	20	
		Контур 4	КГ	10	19	20	
Электропитание			В, Ф. Гц		380-400, 3, 50		
Номинальный ток			А	156.1	203.1	250.2	
Пусковой ток			A	416.4	538.1	607.3	
Максимальный рабочий ток			A	204.4	273.6	342.8	
	Длина		ММ	2960	4320	5100	
Размеры	Ширина		ММ	2300	2300	2300	
	Высота		ММ	2500	2500	2500	
Масса транспортировочн	іая		КГ	2650	3430	4230	
Масса эксплуатационная			КГ	2830	3650	4580	

Модельный ряд и производительность

Модельный ряд

В серию модульных чиллеров с винтовым компрессором входят 12 базовых моделей, модульная конструкция которых позволяет достичь требуемой холодопроизводительности путем составления соответствующих комбинаций. Высокая эффективность при частичной загрузке и равномерная наработка компрессоров разных агрегатов в составе модуля снижают расходы при эксплуатации.

 $\mbox{Чиллеры MASC_B-SB3FL}$ дорабатываются низкотемпературным комплектом, который позволяет работать при температуре окружающей среды от -20 до +43 $\mbox{°C}$.

Базовые модули

400 кВт	400 кВт 480 кВт		686 кВт	
747 кВт	865 кВт	990 кВт	1035 кВт	
1176 кВт	1333 кВт	1471 кВт	1692 кВт	

Модульная конструкция

Высокая производительность, свободное сочетание блоков, максимальная надежность.

Высокая надежность обеспечивается:

- Независимыми контурами в чиллерах с 2 компрессорами;
- модульной конструкцией, позволяющей иметь резерв в случае выхода из строя одной из машин;
- 100%-ным заводским контролем сборки и тестированием оборудования;
- антикоррозийной защитой корпуса и всех компонентов от влаги и пыли.

Легкость монтажа и простота обслуживания

- Компактный размер модулей облегчает транспортировку и монтаж чиллеров;
- запуск системы можно осуществлять поэтапно, по мере установки и подключения холодильных машин;
- реле протока в комплекте.

Конструктивные и функциональные особенности

температур на входе

20°C

Диапазон температур

и выходе 8°C

Диапазон рабочих температур

Существует два типа конструктивного исполнения чиллеров: стандартное — серия MASC-B-SB3F и низкотемпературное — серия MASC-B-SB3FL (позволяет работать на охлаждение при температуре окружающей среды от $-20\,^{\circ}$ C).

70

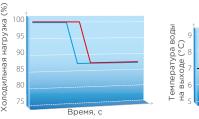
60

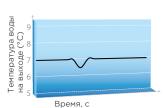
50

40

10

5

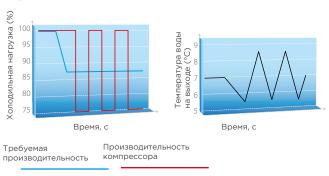

60 Охлаждение* Охлаждение** 43°C 43°C 40 10 10°C 10 20 10°C 20°C Диапазон температур наружного воздуха



Бесступенчатое регулирование производительности

Плавное регулирование холодопроизводительности чиллера в соответствии с изменением тепловой нагрузки обеспечивает точное поддержание температуры воды и высокую энергоэффективность за счет оптимальной загрузки при частичных тепловых нагрузках.

Бесступенчатое регулирование производительности MASC_B



Высокоэффективный винтовой компрессор Hanbell

Ступенчатое регулирование производительности

- Профиль винтового ротора оптимизирован для процесса сжатия. Это не только обеспечивает большую объемную производительность, но и уменьшает перетечки холодильного агента. Двухвинтовой компрессор имеет прочную и надежную асимметричную конструкцию с пятью и шестью зубьями соответственно, изготовленную с микронной точностью.
- Высокоэффективный электродвигатель большой мощности охлаждается хладагентом. Винтовые роторы приводятся в движение электродвигателем напрямую для увеличения КПД.
- В компрессоре используются высокоэффективные подшипники с высокой устойчивостью к нагрузкам, что позволяет увеличить срок службы компрессора и обеспечить непрерывную работу чиллера в течение более 50 000 часов.
- Новый модуль защиты предохраняет от неправильного чередования фаз и пропадания фазы, измеряет температуру обмоток двигателя
 и температуры нагнетания, имеет функцию самодиагностики для обеспечения безопасной работы компрессора.

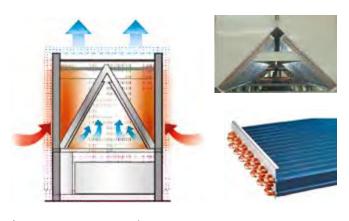
Электронный регулирующий вентиль (ЭРВ)

Высокоточная регулировка для обеспечения стабильной и эффективной работы агрегата.

Высокоточный ЭРВ Традиционный расширительный вентиль Тошков расучилования положения положения расучилования в должно положения положения положения положения положения положения положения в должно положения положени

Точное регулирование подачи хладагента обеспечивает наилучшие условия для правильной работы компрессора.

Подача хладагента регулируется с запозданием, что приводит к нестабильной работе чиллера и высоким эксплуатационным расходам.


Конструктивные и функциональные особенности

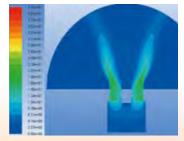
R134a SCREW

MASC_B

Конденсатор

Конденсатор изготовлен из медных трубок с внутренним оребрением для повышения эффективности теплообмена. М-образная конструкция позволяет уменьшить габариты чиллера.

Алюминиевые ламели с гидрофильным покрытием


Испаритель затопленного типа

- Затопленный испаритель высокой эффективности.
- Крышки с обеих сторон теплообменника можно снять для облегчения обслуживания.
- Конструкция позволяет равномерно распределить хладагент, оптимизировать теплообмен и повысить эффективность работы.
- Специальная конструкция перегородок позволяет интенсифицировать теплообмен.
- Выход паров хладагента сверху предотвращает всасывание жидкости компрессором, что повышает надежность чиллера.

Высокоэффективный вентилятор с большим расходом

- При проектировании крыльчатки вентилятора использовалось профессиональное программное обеспечение для моделирования аэродинамических процессов. Это позволило разработать вентилятор, который обеспечивает больший расход воздуха при низком уровне шума.
- Благодаря оптимизации конструкции электродвигатель вентилятора меньше нагревается, потребляет меньше энергии и имеет более длительный срок службы.

Встроенный гидравлический модуль (комплектуется опционально)

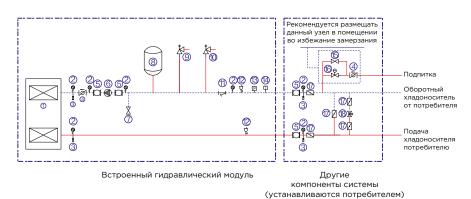
MASC_B

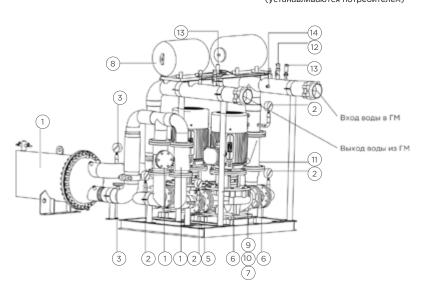
Для системы холодоснабжения гидромодуль является необходимым и очень важным элементом. Он отвечает за циркуляцию хладоносителя между чиллером и потребителем (например, фанкойлами или промежуточным теплообменником). В зависимости от назначения чиллера и режимов его работы гидромодуль может работать на воде или водных растворах гликолей (пропиленгликоль, этиленгликоль) — в случае, если чиллер эксплуатируется при отрицательных температурах окружающего воздуха.

Варианты исполнения встроенного гидромодуля

Внешний статический напор:

- Super high lift 300 кПа;
- High lift 200 кПа.


Тип насоса:


- On/Off;
- С частотным регулированием производительности.

Количество насосов:

2 или 1.

Общая схема гидравлического модуля*

1 Испаритель
2 Датчик давления
3 Датчик температуры
4 Обратный клапан
5 Виброкомпенсатор
6 Hacoc
7 Сливной кран
8 Расширительный бак
9 Предохранительный клапан
(10) Сливной кран
11) Фильтр
12) Автоматический выпускной клапан
(13) Датчик давления
(14) Датчик температуры
(15) Клапан быстрой подпитки
(16) Клапан подпитки воды
(17) Клапан байпаса
(18) Регулирующий клапан

^{*} Схема гидромодуля приведена для справки. На ней изображены общий вид стандартного гидромодуля и базовый набор элементов. В зависимости от производительности, комплектации, режима работы и требований заказчика внешний вид и гидравлическая схема гидромодуля могут различаться

Экологическая безопасность

R134a SCREW

MASC_B

- Высокая экономичность чиллеров снижает потребности производства электроэнергии и уменьшает выброс парниковых газов (CO₂).
- R134a это экологически безопасный хладагент, не разрушающий озоновый слой.
- Соответствует требованиям LEED®.
- Небольшой объем заправки хладагента.
- Высокая производительность.

ОБЪЕКТ: фармацевтическое предприятие «Фармсинтез». Для нужд технологического охлаждения используется более 5 МВт чиллеров Midea MASC_B.

Интеллектуальное управление

Чиллером управляет электронная плата, которая поддерживает возможность сетевого управления модульной системой до восьми чиллеров в режиме «ведущий — ведомый» по сетевому интерфейсу RS485. Существует возможность подключения к системе диспетчеризации объекта по сетевому протоколу Modbus-RTU. Предусмотрен высокий уровень автоматической защиты от высокого/низкого давления хладагента, отсутствия протока воды, перегрузки электродвигателя и др.

Управление:

- Электронная плата управления.
- Дисплей: 7-дюймовый сенсорный экран.
- Интерфейс связи: RS485.
- Протокол связи: Modbus-RTU.
- Встроенные защиты: более 20 шт., включая защиты по электропитанию, компрессору, давлению и температуре и т. д.

R134a SCREW

MASC_B

Модель			MASC 400B-SB3F (L)	MASC 480B-SB3F (L)	MASC 595B-SB3F (L)	MASC 685B-SB3F (L)	MASC 745B-SB3F (L)	MASC 865B-SB3F (L)
	Холодопроизводительность	кВт	400.2	480.7	596.9	685.8	747.2	864.3
Охлаждение	Номинальная потребляемая мощность	кВт	119.9	154.6	196.4	223.7	243.8	276.4
	EER	-	3.337	3.109	3.038	3.066	3.064	3.126
	IPLV	-	4.319	4.155	4.094	4.100	4.123	4.152
Электропитани	e	В, Ф, Гц			380,	3, 50	*	
Максимальный	рабочий ток	А	294.3	362.9	362.9	362.9	362.9	362.9
	Количество	шт.			1	1	1	1
Тип Компрессор Регулирование производительности		-		Полугерме	тичный двухротс	рный винтовой к	омпрессор	
		-			Бесступенча	этое 25~100%		
Тип пуска					Y,	/ Δ		
Тип					R1:	34a		
Хладагент	Заправка	КГ	113.0	118.0	151.0	177.0	191.0	214.0
Конденсатор	Тип	/		Тр	убчатый с алюми	ниевым оребрені	ием	
Da.,=	Количество	/	6	6	8	10	12	12
Вентиляторы	Расход воздуха	м³/ч	23000 × 6	23000 × 6	23000 × 8	23000 × 10	23000 × 12	23000 × 12
	Тип	/			Кожухо	трубный		
	Расход воды	м³/ч	68.58	82.37	102.3	117.5	128.0	148.1
Испаритель	Перепад давления по воде	кПа	42.7	46.3	70.4	79.2	73.4	76.6
	Присоединительный размер	DN	150	150	150	150	150	200
	Тип присоединения				Vict	aulic	*	
Диапазон	T1 (стандартное исполнение)	°C			+10-	-+43		
рабочих температур	L (вариант исполнения)	°C			-20	-+43		
	Длина	ММ	4220	4220	5055	6060	7065	6835
Размеры	Ширина	ММ	2300	2300	2300	2300	2300	2300
	Высота	ММ	2460	2460	2460	2460	2460	2460
M	Транспортировочная	КГ	3700	4300	4900	5550	5950	6750
Macca	Эксплуатационная	КГ	3850	4470	4990	5770	6190	7020

ПРИМЕЧАНИЕ

Охлаждение: температура охлажденной воды на выходе $7\,^{\circ}$ С, температура наружного воздуха $35\,^{\circ}$ С по сухому термометру.

R134a SCREW

MASC_B

Модель			MASC 990B-SB3F (L)	MASC 1035B-SB3F (L)	MASC 1175B-SB3F (L)	MASC 1335B-SB3F (L)	MASC 1470B-SB3F (L)	MASC 1690B-SB3F (L)			
	Холодопроизводительность	кВт	990.1	1035	1176	1333	1471	1692			
Охлаждение	Номинальная потребляемая мощность	кВт	304.9	333.6	378.9	441.6	473.9	539.8			
	EER	-	3.247	3.104	3.105	3.021	3.105	3.135			
	IPLV	-	4.203	4.242	4.219	4.227	4.218	4.230			
Электропитани	1e	В, Ф, Гц			380,	3, 50	•				
Максимальный	рабочий ток	А	718.3	393.3/393.3	446.5/446.5	519.9/519.9	557.1/557.1	597.3/597.3			
	Количество	шт.	1		1	2					
	Тип	-		Полугерме	етичный двухрот	орный винтовой н	компрессор				
Компрессор Регулирование производительности		-	Бесступенчатое 25—100%		Бес	ступенчатое 12.5	-100%				
Тип пуска -				Υ/Δ							
·····	Тип	/	R134a								
Хладагент	Заправка	кг	235.0	156+161	164+169	176+182	202+207	200+215			
Конденсатор	Тип	/		Тр	убчатый с алюми	іниевым оребрен	ием				
D	Количество	/	14	16	18	20	20	22			
Вентиляторы	Расход воздуха	м³/ч	23000 × 14	23000 × 16	23000 × 18	23000 × 20	23000 × 20	23000 × 22			
	Тип	/			Кожухс	трубный					
	Расход воды	м³/ч	169.7	177.4	201.6	228.6	252.2	290.0			
Испаритель	Перепад давления по воде	кПа	67.3	68.9	76.6	75.8	75.5	87.4			
	Присоединительный размер	DN	200	DN200	DN200	DN200	DN200	DN200			
	Тип присоединения				Vict	taulic					
Диапазон	T1 (стандартное исполнение)	°C			+10	~+43					
рабочих температур	L (вариант исполнения)	°C			-20	~+43					
	Длина	ММ	7840	8865	9870	10875	10875	11880			
Размеры	Ширина	ММ	2300	2300	2300	2300	2300	2300			
	Высота	ММ	2460	2460	2460	2460	2460	2460			
	Транспортировочная	KF	7300	9100	9600	10900	11400	13540			
Macca	Эксплуатационная	KF	7590	9450	9970	11290	11800	14040			

ПРИМЕЧАНИЕ

Охлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.

Комфорт и эффективность: инверторные чиллеры Midea AirBoost для бизнес-центра «STONE Савеловская»

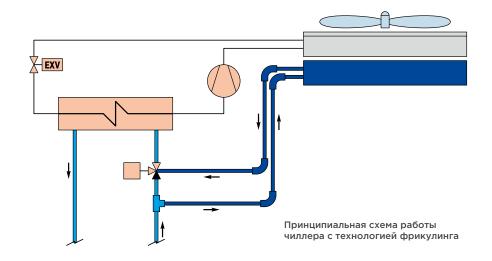
В контексте стремительно меняющейся коммерческой среды и особых требований к созданию оптимального микроклимата для посетителей бизнес-центра «STONE Савеловская» были выбраны инверторные чиллеры Midea AirBoost. При поставке оборудования компания Midea сделала ставку на передовые технологии, которые обеспечивают надежное охлаждение, бесперебойную работу и адаптированы к российским условиям.

В современном мире, где бизнес становится все более динамичным и требовательным к условиям работы, обеспечение комфортного микроклимата в офисных помещениях становится ключевым фактором успеха. Именно поэтому при строительстве бизнесцентров особое внимание уделяется системам кондиционирования воздуха.

Одним из ярких примеров современных решений в этой области являются инверторные чиллеры Midea AirBoost, которые будут установлены в бизнесцентре «STONE Савеловская».

Бизнес-центр будет состоять из двух 24-этажных офисных башен, объединенных стилобатом, общей наземной площадью 93 тыс. м². На объект осуществлена поставка десяти чиллеров Midea серии AirBoost общей холодопроизводительностью более 11 МВт.

Техническое решение было выбрано не зря. Компания Midea в собственных R&D-центрах смогла разработать продукт под потребности российско-



го заказчика с учетом климатических особенностей нашей страны — чиллеры с воздушным охлаждением конденсатора на базе винтовых инверторных компрессоров.

На объект была осуществлена поставка оборудования в двух вариантах исполнения: чиллеры, оснащенные низкотемпературным комплектом, позволяющим работать на охлаждение при наружной температуре воздуха до $-20\,^{\circ}$ С, а также чиллеры со встроенным модулем фрикулинга для работы при наружной температуре до $-40\,^{\circ}$ С для площадей с требованием бесперебойного охлаждения.

Работа фрикулинга при низкой температуре окружающей среды обеспечивается теплообменником фрикулинга и трехходовым вентилем с электроприводом. В летнем режиме хладоноситель охлаждается чиллером, проходя через теплообменник испарителя. В переходный период, когда температура наружного воздуха снижается, включается модуль фрикулинга: хладоноситель проходит через теплообменник естественного охлаждения, частично охлаждается и далее попадает в испаритель. Мощность компрессора при этом постепенно снижается.

При низкой температуре наружного воздуха жидкость охлаждается исключительно за счет теплообменника фрикулинга. Когда чиллер выходит на требуемую мощность, компрессор полностью отключается, что способствует экономии энергии.

энергоэффективности Повышение является одним из основных запросов офисных пространств премиумкласса. Инверторный винтовой компрессор обеспечивает высокий комплексный коэффициент эффективности охлаждения IPLV = 5 в теплый период. В переходный и холодный периоды года используется частичный или полный фрикулинг, существенно повышающий сезонную эффективность при круглогодичной работе чиллера. Чиллер оснащен двухроторным винтовым инверторным компрессором, разработанным специально для систем, в которых требуется плавное изменение производительности. Революционная технология инверторного регулирования позволяет контролировать частоту с точностью 0,1 Гц, обеспечивая тем самым поддержание заданной температуры воды, своевременное

В своих R&D-центрах Midea разработала продукт под потребности российского заказчика — чиллеры с воздушным охлаждением конденсатора на базе винтовых инверторных компрессоров

изменение параметров без частых колебаний и отключений. Таким образом повышается комфорт пользователя и снижается потребление энергии.

Визуализация проекта «STONE Савеловская»

При запуске чиллера инвертор плавно повышает пусковой ток от нуля до номинального значения, исключая высокие пусковые токи, в несколько раз превышающие номинальное значение. Инвертор обеспечивает и более быстрый выход чиллера на рабочий режим — при рестарте чиллеру AirBoost Freecooling требуется в два раза меньше времени по сравнению с конкурентами для выхода на рабочие параметры.

Учитывая динамику развития мегаполиса и сочетая современные тренды на функциональность, «STONE Case-

ловская» лаконично впишется в деловой квартал столицы в районе метро «Белорусская».

Эффективные планировочные и инженерные решения и офисы формата «конструктор» позволяют решить основную задачу — размещение бизнеса в удобном и необходимом по площади офисе.

Помимо офисных помещений в проекте предусмотрены кафе, торговые помещения, фитнес-клуб, размещение бытовых и сервисных служб, коворкинги, а также рестораны с летними верандами, где шум не побеспокоит посетителей, ведь чиллеры Midea AirBoost Freecooling поставляются с шумозащитным кожухом компрессора.

Модельный ряд и производительность

MASC A-SB3ZXF

Модельный ряд

Винтовой инверторный чиллер с воздушным охлаждением AirBoost спроектирован таким образом, чтобы обеспечить максимальную эффективность при различных условиях эксплуатации: круглогодичное охлаждение, сезонное охлаждение, быстрый запуск, частичная и полная нагрузка.

Он широко используется в гражданских или промышленных зданиях и идеально подходит для центров обработки данных, холодильных хранилищ, организаций, чувствительных к температуре, таких как фармацевтические лаборатории, больницы и производственные предприятия, где требуется постоянное охлаждение оборудования и процессов. Благодаря опции низкошумного исполнения может быть установлен вблизи мест, накладывающих строгие ограничения на уровень шума от оборудования.

В серию модульных чиллеров входят 13 базовых моделей холодопроизводительностью от 286 до 1732 кВт, модульная конструкция которых позволяет достичь требуемой холодопроизводительности путем набора соответствующих комбинаций. Высокая эффективность при частичной загрузке и равномерная наработка компрессоров разных агрегатов в составе модульной системы снижает эксплуатационные расходы системы

Чиллеры MASC_A опционально комплектуются низкотемпературным комплектом, который позволяет работать на охлаждение при температуре окружающей среды от -20°C (опция).

Модульная конструкция

Высокая производительность, свободное сочетание блоков, максимальная надежность.

13 856 кВт

Безопасный экологичный хладагент

R134a— экологически безопасный хладагент, не разрушающий озоновый слой и обладающий большой эффективностью.

Главные компоненты

R134a INVERTER SCREW

MASC_A-SB3ZXF

Компрессор

Двухроторный винтовой компрессор специально разработан для работы с использованием частотного регулятора производительности. Диапазон регулирования составляет от 25 до 70 Гц, обеспечивая высокую энергоэффективность при частичной нагрузке.

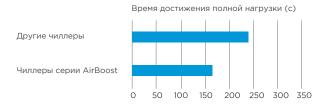
Конденсатор

М-образная конструкция обеспечивает высокую эффективность теплообмена и компактность чиллера.

Технология инверторного регулирования

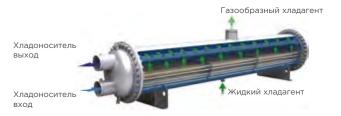
Технология инверторного регулирования позволяет контролировать частоту компрессора с точностью 0,1 Гц, обеспечивая необходимый уровень контроля температуры воды, самодиагностику, своевременное регулирование параметров работы, отсутствие резких колебаний температуры и частых отключений, тем самым повышая комфорт пользователя и снижая потребление электроэнергии.

Изменение температуры при использовании on/off-регулирования компрессоров


Изменение температуры при

использовании инверторного

регулирования компрессоров


Быстрый перезапуск

При повторном включении для выхода на уровень 80% производительности требуется всего 165 секунд, в то время как аналогичные чиллеры тратят не менее 240 секунд для достижения 80%-ной нагрузки.

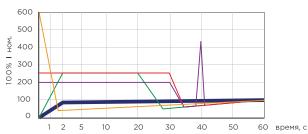
Испаритель затопленного типа

- Затопленный испаритель высокой эффективности.
- Крышки с обеих сторон теплообменника можно снять для облегчения обслуживания.
- Конструкция позволяет равномерно распределить хладагент, оптимизировать теплообмен и повысить эффективность работы.
- Специальная конструкция перегородок позволяет интенсифицировать теплообмен.
- Выход паров хладагента сверху предотвращает всасывание жидкости компрессором, что повышает надежность чиллера.

Электронный регулирующий вентиль (ЭРВ)

Высокоточная регулировка для обеспечения стабильной и эффективной работы агрегата.

Низкий уровень шума


- Вентилятор со статической и динамической балансировкой с низким уровнем шума и вибрации.
- Высокая производительность по воздуху.
- Снижение шума на 5—10 дБ(А), стандартно чиллер оснащен кожухом компрессора и малошумным вентилятором.

Плавный пуск

Для пуска устройства применяется частотный регулятор производительности, который позволяет плавно увеличивать ток при запуске и обеспечивает стабильную работу от 0 A до полной загрузки, не превышая значения максимального рабочего тока.

- Непосредственный пуск (600—800 %)
- Звезда треугольник (200—300 %)
- Тиристорный плавный пуск (300—400%)
- Инверторный пуск (100%)
- Автотрансформаторный пуск (400-500%)

Система управления

R134a INVERTER SCREW

MASC_A-SB3ZXF

Управление чиллером осуществляется электронной платой с функцией диагностики неисправностей. Плата поддерживает возможность сетевого управления модульной системой до восьми чиллеров в режиме «ведущий — ведомый» по сетевому протоколу ModBus. Панель управления чиллера оснащена 7-дюймовым цветным LCD-дисплеем с сенсорным управлением.

Система управления осуществляет мониторинг параметров и диагностику неисправностей. Контроллер дает возможность составления недельного расписания работы, ведения записи основных текущих параметров, истории тепловой нагрузки, сбоев в работе и их причин. Имеется функция восстановления параметров, предшествующих выключению оборудования. Автоматика системы и многочисленные датчики обеспечивают защиту по давлению, уровню содержания хладагента и масла, не допускают перегрузки двигателя, замерзания теплоносителя. При отсутствии протока воды работа устройства автоматически прекращается. Также контролируется правильность чередования и обрыв фаз питающего напряжения. Через интерфейс RS485 чиллер может быть интегрирован в систему управления зданием по протоколу связи Modbus.

- Трехуровневая настройка пароля для предотвращения несанкционированного доступа.
- Функция памяти при отключении питания.
- Включение/выключение по времени.
- Ведущий и ведомый.
- Резервирование.

Системы удаленного мониторинга и управления, удаленной диагностики

R134a INVERTER SCREW

MASC_A-SB3ZXF

Модель			MASC285A-SB3ZXF	MASC400A-SB3ZXF	MASC490A-SB3ZXF
	Холодопроизводительность	кВт	286.4	397.0	493.0
	Потребляемая мощность	кВт	83.5	116.5	143.6
Номинальные параметры	EER	-	3.431	3.409	3.433
	IPLV	-	5.002	5.010	5.053
/ - · · - · - · - · - · ·	Тип	/	Пол	угерметичный винтовой компрес	сор
Компрессор	Количество	шт.	1 1		1
Регулирование производи	тельности	-	Бесс	тупенчатое регулирование (20-1	00%)
,	Тип	/		R134a	
Хладагент	Объем заправки	КГ	126.0	126.0	148.0
Электропитание		В, Ф, Гц		380-400, 3, 50	
Номинальный ток		А	145.1	199.6	248.2
Пусковой ток		А	≤145.1	≤196.6	≤248.2
Макс. рабочий ток		Α	212.9	270.7	303.9
Конденсатор	Тип	/	Тру	бчатый с алюминиевым оребрен	ием
	Количество вентиляторов	ШТ	6	6	8
	Потребляемая мощность	кВт	2×6	2×6	2×8
	Тип	/			
	Расход воды	м³/ч	49.08	68.04	84.49
4	Перепад давления по воде	кПа	32.9	42	43.5
Испаритель	Присоединительный размер	ММ	DN150	DN150	DN150
	Макс. рабочее давление	МПа		1	
	Тип присоединения			Victaulic	
	Длина	ММ	4440	4440	5440
Габаритные размеры	Ширина	ММ	2300	2300	2300
	Высота	ММ	2460	2460	2460
4	Транспортировочная	КГ	4240	4240	4950
Macca	Эксплуатационная	КГ	4440	4440	5150
	Т1 (стандартное исполнение)	°C		+5~+48	
Рабочий диапазон	Т3 (вариант исполнения)	°C		+5~+52	
	L (вариант исполнения)	°C		-20~+48	

Модель			MASC620A-SB3ZXF	MASC725A-SB3ZXF	MASC845A-SB3ZXF	
	Холодопроизводительность	кВт	618.2	723.9	844.6	
	Потребляемая мощность	кВт	181.3	212.3	247.5	
Номинальные параметры	EER	-	3.410	3.410	3.413	
	IPLV	-	5.019	5.018	4.986	
Кладагент Электропитание	Тип	/	Пол	герметичный винтовой компрессор		
Сомпрессор	Количество	шт.	1	1	1	
Регулирование производи	тельности	-	Бесс	тупенчатое регулирование (20-	100%)	
/ 525250117	Тип	/		R134a		
Отадат ент	Объем заправки	КГ	168.0	192.0	225.0	
Электропитание		В, Ф, Гц		380-400, 3, 50		
Номинальный ток		Α	314.3	365.1	430.6	
Тусковой ток		A	≤314.3	≤365.1	≤430.6	
Ч акс. рабочий ток		А	427.2	495.5	581.8	
-	Тип	/	Тру		нием	
	Количество вентиляторов	ШТ	10 12		14	
	Потребляемая мощность	кВт	2×10	2×12	2×14	
	Тип	/		Кожухотрубный		
	Расход воды	м³/ч	105.9	124	144.7	
	Перепад давления по воде	кПа	72.6	68.5	79.7	
1спаритель	Присоединительный размер	ММ	DN150	DN150	DN150	
	Макс. рабочее давление	МПа		1		
	Тип присоединения			Victaulic		
	Длина	ММ	6245	7250	8255	
абаритные размеры	Ширина	ММ	2300	2300	2300	
	Высота	ММ	2460	2460	2460	
 Ласса	Транспортировочная	KF	5500	6170	7050	
·iacca	Эксплуатационная	КГ	5720	6410	7330	
	T1 (стандартное исполнение)	°C		+5~+48	*	
Рабочий диапазон	ТЗ (вариант исполнения)	°C		+5~+52		
	L (вариант исполнения)	°C		-20~+48		

ПРИМЕЧАНИЕ

Охлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.

R134a INVERTER SCREW

MASC_A-	SB3ZXF
---------	--------

Модель			MASC965A-SB3ZXF	MASC1160A-SB3ZXF	MASC1270A-SB3ZXF	
	Холодопроизводительность	кВт	965.1	1162	1268	
Номинальные параметры	Потребляемая мощность	кВт	283.7	340.3	371.3	
номинальные параметры	EER	- 1	3.402	3.415	3.415	
	IPLV	- 1	4.984	4.974	4.962	
· · · · · · · · · · · · · · · · · · ·	Тип	/	Полу	угерметичный винтовой компре	ссор	
Компрессор	Количество	шт.		2	2	
Регулирование производи	тельности	- 1	Бесс	тупенчатое регулирование (10-1	00%)	
V	Тип	/		R134a		
Хладагент	Объем заправки	КГ	280.0	336.0	374.0	
Электропитание		В, Ф, Гц		380-400, 3, 50		
Номинальный ток		A	492.7	586.5	643.9	
Пусковой ток		A	≤492.7 ≤293.3/293.3 ≤33			
Макс. рабочий ток		A	664.2	451.6/370.6	504.1/414.1	
Конденсатор	Тип	/	Тру	чатый с алюминиевым оребрением		
	Количество вентиляторов	ШТ.	16	18	20	
	Потребляемая мощность	кВт	2×16	2×18	2×20	
	Тип	/		Кожухотрубный		
	Расход воды	M ³ /4	165.4	199.1	217.3	
Испаритель	Перепад давления по воде	кПа	72.3	75.1	64.3	
лспаритель	Присоединительный размер	MM	DN200	DN200	DN200	
	Макс. рабочее давление	МПа		1		
	Тип присоединения			Victaulic		
	Длина	MM	9260	10265	11270	
Габаритные размеры	Ширина	MM	2300	2300	2300	
	Высота	MM	2460	2460	2460	
Mana	Транспортировочная	КГ	7600	9800	10590	
Macca	Эксплуатационная	КГ	7940	10160	10970	
	T1 (стандартное исполнение)	°C		+5~+48		
Рабочий диапазон	ТЗ (вариант исполнения)	°C		+5~+52		
	L (вариант исполнения)	°C		-20~+48		

Модель			MASC1370A-SB3ZXF	MASC1450A-SB3ZXF	MASC1550A-SB3ZXF	MASC1730A-SB3ZXF
	Холодопроизводительность	кВт	1368	1449	1548	1732
Номинальные параметры	Потребляемая мощность	кВт	401.2	425.0	453.6	541.4
поминальные параметры	EER	-	3.410	3.409	3.413	3.199
	IPLV	-	4.967	5.064	4.966	4.975
Компрессор	Тип	/	Полугерметичный		интовой компрессор	
Komilpeccop	Количество	ШТ.	2	2	2	2
Регулирование производи	тельности	-		Бесступенчатое регу	лирование (10-100%)	
Хладагент		/		R13	34a	
лладагент	Объем заправки	КГ	400.0	400.0	450.0	450.0
Электропитание		В, Ф, Гц		380-40	0, 3, 50	
Номинальный ток		Α	691.8	742.6	784.8	932
Пусковой ток		А	≤345.9/345.9	≤371.3/371.3	≤392.4/392.4	≤466/466
Макс. рабочий ток	Maкс. рабочий ток		518.0/428.0	550.3/460.3	584.3/485.3	618.5/519.5
	Тип	/		ниевым оребрением		
Конденсатор	Количество вентиляторов	шт.	20	20	22	22
	Потребляемая мощность	кВт	2×20	2×20	2×22	2×22
	Тип	/		Кожухо	трубный	
	Расход воды	м³/ч	234.5	248.2	265.3	296.8
Испаритель	Перепад давления по воде	кПа	73.5	74.8	73.9	76
испаритель	Присоединительный размер	MM	DN200	DN200	DN200	DN200
	Макс. рабочее давление	МПа			1	
	Тип присоединения			Vict	aulic	
	Длина	ММ	11270	11270	11855	11855
Габаритные размеры	Ширина	ММ	2300	2300	2300	2300
	Высота	ММ	2460	2460	2460	2460
Macca	Транспортировочная	KΓ	10980	10980	12360	12360
Macca	Эксплуатационная	KΓ	11380	11380	12800	12800
	T1 (стандартное исполнение)	°C		+5~	+48	1
Рабочий диапазон	ТЗ (вариант исполнения)	°C		+5~	+52	
	L (вариант исполнения)	°C		-20-	·+48	

ПРИМЕЧАНИЕОхлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.

Встроенный гидравлический модуль

R134a INVERTER SCREW

MASC_A-SB3ZXF

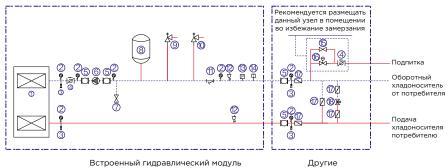
(комплектуется опционально для моделей MASC_A-SB3ZXF, MASC_A-SB3ZXF-2C)

Для системы холодоснабжения гидромодуль является необходимым и очень важным элементом. Он отвечает за циркуляцию хладоносителя между чиллером и потребителем (например, фанкойлами или промежуточным теплообменником). В зависимости от назначения чиллера и режимов его работы гидромодуль может работать на воде или водных растворах гликолей (пропиленгликоль, этиленгликоль) — в случае, если чиллер эксплуатируется при отрицательных температурах окружающего воздуха.

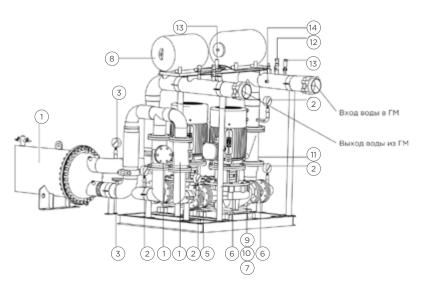
Варианты исполнения встроенного гидромодуля

Внешний статический напор:

- Super high lift 300 κΠa;
- High lift 200 κΠa.


Тип насоса:

- On/Off;
- с частотным регулированием производительности.


Количество насосов:

■ 2 или 1.

Общая схема гидравлического модуля*

1 Испаритель
2 Датчик давления
3 Датчик температуры
4 Обратный клапан
5 Виброкомпенсатор
6 Hacoc
7) Сливной кран
8 Расширительный бак
9 Предохранительный клапан
(10) Сливной кран
11) Фильтр
(12) Автоматический выпускной клапан
(13) Датчик давления
(14) Датчик температуры
(15) Клапан быстрой подпитки
(16) Клапан подпитки воды
(17) Клапан байпаса
(18) Регулирующий клапан

^{*} Схема гидромодуля приведена для справки. На ней изображены общий вид стандартного гидромодуля и базовый набор элементов. В зависимости от производительности, комплектации, режима работы и требований заказчика внешний вид и гидравлическая схема гидромодуля могут различаться

Двухконтурное исполнение (MASC_A-SB3ZXF-2C)

R134a INVERTER SCREW

MASC_A-SB3ZXF

Винтовой инверторный двухконтурный чиллер с воздушным охлаждением серии AirBoost. Два компрессора — два контура. Такая конструкция позволяет продолжить работу с 50%-ной производительностью при выходе из строя одного из контуров, что обеспечивает дополнительную надежность системы холодоснабжения объекта. Система управления отслеживает время работы компрессоров и включает их попеременно для равномерной наработки. Плавное регулирование производительности осуществляется в диапазоне от 10 до 100%.

В серию двухконтурных модульных чиллеров с винтовым компрессором входят 6 базовых моделей, холодопроизводительностью от 560 до 984 кВт, модульная конструкция которых позволяет достичь требуемой холодопроизводительности путем составления соответствующих комбинаций. Высокая эффективность при частичной загрузке и равномерная наработка компрессоров разных агрегатов в составе модуля. Низкие расходы на монтаж и эксплуатацию.

Чиллеры MASC_A опционально дорабатываются низкотемпературным комплектом, который позволяет работать на охлаждение при температуре окружающей среды до -20°C, а также встроенным гидравлическим модулем.

Элементы чиллера

Два независимых фреоновых контура

Два независимых контура позволяют продолжать работу с 50%-ной производительностью при выходе из строя одного из контуров. Это повышает отказоустойчивость и позволяет обеспечить частичное хладоснабжение на время диагностики и устранения аварии.

INVERTER Испаритель Компрессор № 2 ЧРП № 2 Компрессор № 1

Встроенный гидравлический модуль (опционально)

Винтовые чиллеры с воздушным охлаждением теперь имеют опцию: встроенный гидромодуль (2 варианта напора).

MASC_A-SB3ZXF

Инверторный чиллер с воздушным охлаждением

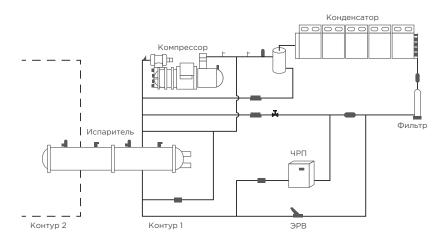
Модель			MASC560A- SB3ZXF(L)-2C	MASC620A- SB3ZXF(L)-2C	MASC705A- SB3ZXF(L)-2C	MASC810A- SB3ZXF(L)-2C	MASC880A- SB3ZXF(L)-2C	MASC1005A- SB3ZXF(L)-2C	
	Холодопроизводительность	кВт	560.8	622.9	711.2	814.1	884.8	984.6	
	Потребляемая мощность	кВт	164.1	183.1	208.2	238.7	259.5	287.7	
Номинальные параметры	EER	-	3.417	3.402	3.416	3.411	3.410	3.422	
	IPLV	-	5.060	5.004	5.050	5.030	5.020	4.940	
	Тип	/			Полугермет	ичный винтовой	компрессор		
Компрессор	Количество	шт.				2			
Регулирование производи	тельности	-		Бесс	тупенчатое регу	лирование (10-10	00%)		
V	Тип	/			R1:	34a			
Хладагент	Объем заправки	KΓ	2×95	2×95	2×110	2×120	2×130	2×145	
Электропитание		В, Ф, Гц	380-400, 3, 50						
Номинальный ток		Α	287.3	319.1	364.8	419.1	453.3	501.0	
Пусковой ток		Α	≤143.6/143.6	≤159.5/159.5	≤182.4/182.4	≤209.6/209.6	≤226.7/226.7	≤250.5/250.5	
Макс. рабочий ток		Α	448.6	448.6	509.8	586.2	582.8	639.7	
	Тип	/	Трубчатый с алюминиевым оребрением						
Конденсатор	Количество вентиляторов	ШТ	8	8	10	12	12	14	
	Потребляемая мощность	кВт	2.8×8	2.8×8	2.8×10	2.8×12	2.8×12	2.8×14	
	Тип	/		***************************************	Кожухо	трубный			
	Расход воды	м³/ч	96.09	106.7	121.9	139.5	151.6	168.7	
	Перепад давления по воде	кПа	31	37.7	82.7	85.4	87.8	86.1	
Испаритель	Присоединительный размер	ММ		*	DN	150			
	Макс. рабочее давление	МПа			1.	0			
	Тип присоединения	-			Муфта	Victaulic			
	Длина	MM	5240	5240	6245	7250	7250	8255	
Габаритные размеры	Ширина	ММ	2300	2300	2300	2300	2300	2300	
	Высота	ММ	2460	2460	2460	2460	2460	2460	
M	Транспортировочная	KΓ	6500	6500	7170	7740	8350	8950	
Macca	Эксплуатационная	KΓ	6800	6800	7470	8040	8650	9250	
Defe	T1 (стандартное исполнение)	°C		*	+5~	+48		*	
Рабочий диапазон	L (вариант исполнения)	°C			-20-	+48			

ПРИМЕЧАНИЕ

Охлаждение: температура охлажденной воды на выходе 7°C, температура наружного воздуха 35°C по сухому термометру.

Исполнение чиллеров:

- MASC_A-SB3ZXF-2C стандартное с рабочим диапазоном наружной температуры воздуха +5-+48°C
- MASC_A-SB3ZXFL-2C низкотемпературное с рабочим диапазоном наружной температуры воздуха -20-+48 °C


Дополнительные опции

- ЕС-вентиляторы
- Работа в режиме охлаждения до -20 *C
- Встроенный гидравлический модуль

- Антикоррозионное исполнение
- Протоколы ModBus TCP, BACnet IP, BACnet MS/TP

Схема двухконтурного чиллера MASC_A-SB3ZXF-2C

Модельный ряд и производительность

MASC-FC

Чиллеры со встроенным модулем фрикулинга являются наиболее эффективным и работоспособным оборудованием для обеспечения круглогодичного бесперебойного холодоснабжения объектов различного назначения. Чиллеры Midea Airboost Freecooling отвечают самым современным требованиям надежности и энергоэффективности, поэтому широко применяются в различных областях промышлен-

ности, объектах культурного наследия, сооружениях для размещения серверного, сетевого и телекоммуникационного оборудования.

Чиллеры MASC-FC опционально дорабатываются низкотемпературным комплектом, который позволяет работать на охлаждение при температуре окружающей среды до -40 °C.

Круглогодичные производства

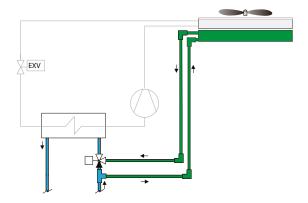
Фондохранилища

Модельный ряд

MASC265-1310A - SB3ZXF-FC75-370

Высокая производительность, свободное сочетание блоков, максимальная надежность

88


Основные компоненты

R134a INVERTER SCREW

MASC-FC

Принципиальная схема работы чиллера с Freecooling

Работа фрикулинга при низкой температуре окружающей среды обеспечивается теплообменником фрикулинга и трехходовым вентилем с электроприводом.

В летнем режиме работы хладоноситель охлаждается, проходя через теплообменник испарителя.

В переходный период при понижении температуры воздуха включается фрикулинг: хладоноситель проходит через теплообменник фрикулинга, частично охлаждается и уже потом попадает в испаритель. Мощность компрессора при этом постепенно снижается.

Зимой, при низкой температуре жидкость охлаждается только за счет теплообменника фрикулинга. Когда температура воздуха на улице достаточно понижается, компрессор полностью останавливается.

В стандартной комплектации чиллеры со встроенным модулем фрикулинга работают до температуры наружного воздуха -25 °C, опционально — до -40 °C.

Теплообменник естественного охлаждения Freecooling

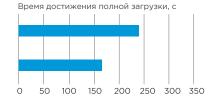
Решение Midea: встроенный теплообменник естественного охлаждения.

Компактные габариты
 Энергосбережение
 Простота обслуживания
 Тепросмения заправления поток
 Воздушный поток

Основные компоненты

R134a INVERTER SCREW

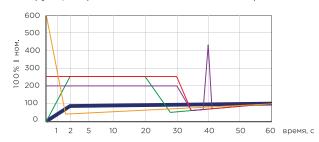
MASC-FC


Технология инверторного регулирования

- Ведущая технология инверторного регулирования позволяет контролировать частоту до 0,1 Гц, обеспечивая высокоточный контроль температуры воды, самодиагностику, своевременное регулирование параметров без частых колебаний температуры и отключений. Повышается комфорт пользователя, и снижается потребление энергии.
- Для рестарта к 80% производительности требуется всего 165 секунд, в то время как аналогичным чиллерам требуется не менее 240 секунд для достижения 80%-ной загрузки.

Чиллеры серии

AirBoost Freecooling



Изменение температуры при использовании инверторного регулирования компрессоров

Для пуска устройства применяется частотный регулятор производительности, который позволяет плавно увеличивать ток при запуске и обеспечивает стабильную работу от О А до полной загрузки, не превышая значения максимального рабочего тока.

- Непосредственный пуск (600-800%)
- Звезда треугольник (200—300 %)
- Тиристорный плавный пуск (300—400 %)
- Инверторный пуск (100 %)
- Автотрансформаторный пуск (400—500 %)

Компрессор

Двухроторный винтовой компрессор специально разработан для работы с использованием частотного регулятора производительности. Диапазон регулирования составляет от 25 до 70 Гц, обеспечивая высокую энергоэффективность при частичной нагрузке.

Испаритель затопленного типа

- Затопленный испаритель высокой эффективности.
- Крышки с обеих сторон теплообменника можно снять для облегчения обслуживания.
- Конструкция позволяет равномерно распределить хладагент, оптимизировать теплообмен и повысить эффективность работы.
- Специальная конструкция перегородок позволяет интенсифицировать теплообмен.
- Выход паров хладагента сверху предотвращает всасывание жидкости компрессором, что повышает надежность чиллера.

Конденсатор

М-образная конструкция обеспечивает высокую эффективность теплообмена и компактность чиллера.

Электронный регулирующий вентиль

Высокоточная регулировка для обеспечения стабильной и эффективной работы агрегата.

Система управления

Управление с помощью панели управления

- Трехуровневая настройка пароля для предотвращения несанкционированного доступа.
- Функция памяти при отключении питания.
- Включение/выключение по времени.
- Ведущий и ведомый.
- Резервирование.
- Подключение к системе BMS.

Системы удаленного мониторинга и управления, удаленной диагностики

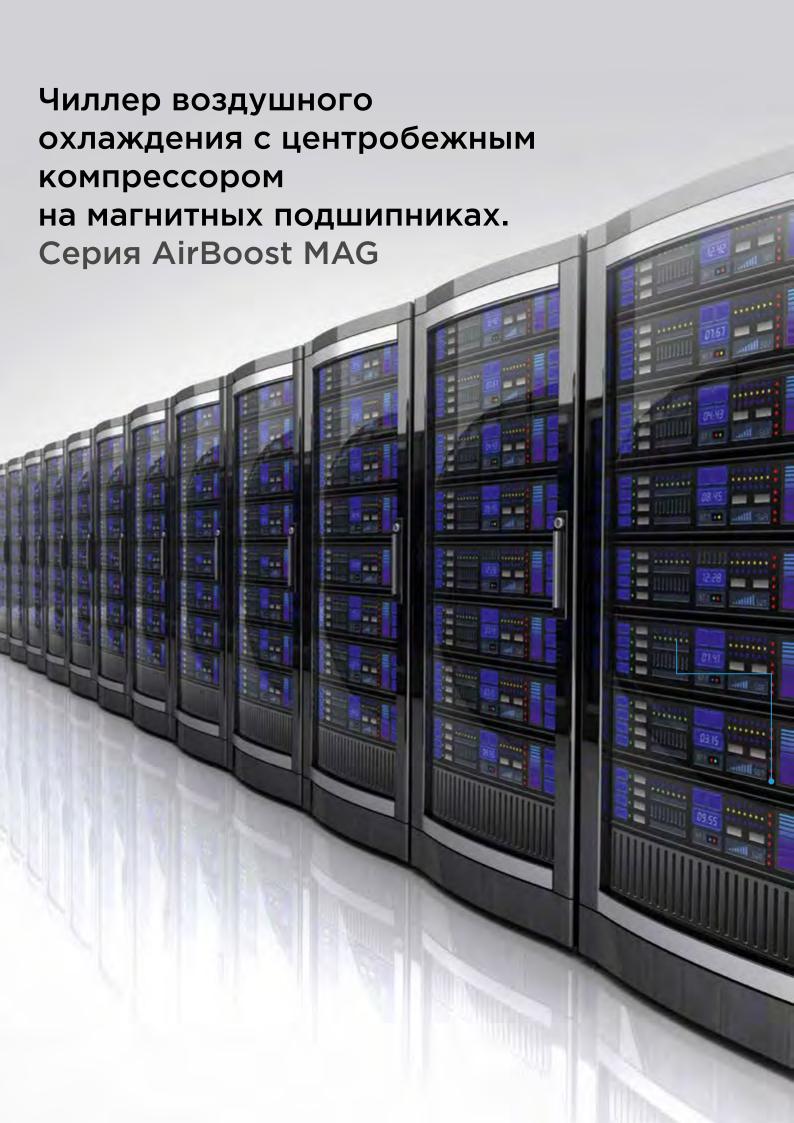
R134a INVERTER SCREW

MASC-FC

AirBoost Freecooling

Модель			MASC265A- SB3ZXF-FC75	MASC385A- SB3ZXF-FC110	MASC460A- SB3ZXF-FC130	MASC585A- SB3ZXF-FC165	MASC685A- SB3ZXF-FC195	
	Холодопроизводительность	кВт	257.6	374.8	443.5	565.0	664.4	
Номинальные параметры	Потребляемая мощность	кВт	82.29	123.4	143.1	185.2	218.9	
	EER	-	3.130	3.037	3.099	3.051	3.035	
Параметры фрикулинга	Холодопроизводительность	кВт	257.6	374.8	443.5	565	664.4	
	Потребляемая мощность	кВт	19.7	19.68	19.7	24.6	29.5	
	EER	-	13.08	19.68	19.69	22.97	22.51	
Температура перехода на	полный фрикулинг	°C	3.7	1.3	-0.2	-0.4	-0.2	
Тип		/		Полугерме	тичный винтовой к	омпрессор	1	
Компрессор	Количество	шт.	1	1	1	1	1	
Регулирование производи	тельности	-		Бесст	упенчатое регулиро (20-100%)	рвание	1	
	/			R134a				
Хладагент	Объем заправки	KF	140	140	148	168	192	
Электропитание		В, Ф, Гц		1	380-400, 3, 50	1	1	
Номинальный ток		А	147.9	215.9	249.7	323.7	379.6	
Пусковой ток		А	≤147.9	≤215.9	≤249.7	≤323.7	≤379.6	
Макс. рабочий ток		А	233.6	303.5	366.8	447.3	516.6	
	Тип	/	Трубчатый с алюминиевым оребрением					
Конденсатор	Количество вентиляторов	ШТ	8	8	8	10	12	
	Потребляемая мощность	кВт	2.5×8	2.5×8	2.5×8	2.5×10	2.5×12	
	Тип	/			Кожухотрубный	*		
	Расход воды	м³/ч	50.55	73.55	87.03	110.9	130.4	
	Перепад давления по воде	кПа	46.8	65.1	112	106	101	
Испаритель	Перепад давления (включено свободное охлаждение)	кПа	79.2	123	74.3	233	149	
	Присоединительный размер	ММ			DN150	*		
	Макс. рабочее давление	МПа			1			
	Тип присоединения	-			Victaulic			
	Длина	ММ	5740	5740	5540	6545	7650	
Габаритные размеры	Ширина	ММ	2300	2300	2300	2300	2300	
	Высота	ММ	2460	2460	2460	2460	2460	
N4	Транспортировочная	KF	5780	5780	6350	6900	7800	
Macca	Эксплуатационная	KF	6280	6280	6890	7500	8500	
Рабочий диапазон темпера	атур наружного воздуха	°C		1	-25~+48 (-40~+48)*		1	

^{*} Опция низкотемпературного исполнения с рабочим диапазоном температур наружного воздуха -40 - +48°C. Указаны параметры для следующих условий: температура выходящей/входящей жидкости 7/12°C; этиленгликоль 40%, фактор загрязнения испарителя 0,0176 м²-°C/кВт, температура наружного воздуха +35°C (сухой термометр).

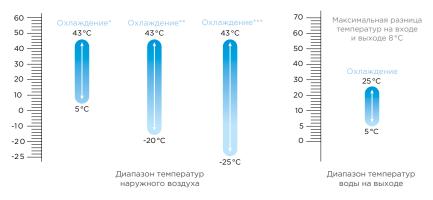


R134a INVERTER SCREW

MASC-FC

Модель			MASC795A- SB3ZXF-FC225	MASC915A- SB3ZXF-FC260	MASC1090A- SB3ZXF-FC310	MASC1200A- SB3ZXF-FC340	MASC1310A- SB3ZXF-FC370	
	Холодопроизводительность	кВт	766.7	885.9	1 057.0	1 160.0	1 261.0	
Номинальные параметры	Потребляемая мощность	кВт	250.7	291.3	345.3	376.7	414.6	
	EER	-	3.058	3.041	3.061	3.079	3.041	
	Холодопроизводительность	кВт	766.7	885.9	1057	1160	1261	
Параметры фрикулинга	Потребляемая мощность	кВт	34.44	39.36	44.3	49.2	49.2	
	EER	-	22.26	22.51	23.87	23.56	25.62	
Температура перехода на	полный фрикулинг	°C	0.0	-0.1	-0.6	-0.4	-1.4	
Тип		/		Полугерме	тичный винтовой к	омпрессор	l	
Компрессор	Количество	шт.	1	1	2	2	2	
Регулирование производи	ительности	-		регулирование ОО%)	Бессту	лини упенчатое регулиро (10-100%)	рвание	
	Тип	/			R134a			
Хладагент	Объем заправки	КГ	225	280	336	374	400	
Электропитание		В, Ф, Гц		1	380-400, 3, 50	1	l	
Номинальный ток		А	440	510.1	600.1	658.6	730.5	
Пусковой ток		А	≤440.0	≤510.1	≤300.0/≤300.0	≤329.3/≤329.3	≤365.2/≤365.2	
Макс. рабочий ток		А	594.9	682.7	476.0/374.7	525.3/412.8	569.6/457.1	
лакс. рабочии ток	Тип	/	Трубчатый с алюминиевым оребрением					
Конденсатор	Количество вентиляторов	ШТ	14	16	18	20	20	
	Потребляемая мощность	кВт	2.5×14	2.5×16	2.5×18	2.5×20	2.5×20	
	Тип	/			Кожухотрубный			
	Расход воды	м³/ч	150.4	173.9	207.5	227.6	247.4	
	Перепад давления по воде	кПа	115	107	109	93.9	101	
Испаритель	Перепад давления (включено свободное охлаждение)	кПа	179	188	212	204	227	
	Присоединительный размер	ММ	DN150	DN200	DN200	DN200	DN200	
	Макс. рабочее давление	МПа		*	1	•		
	Тип присоединения	-			Victaulic			
	Длина	ММ	8655	9660	10665	11670	11670	
Габаритные размеры	Ширина	ММ	2300	2300	2300	2300	2300	
	Высота	ММ	2460	2460	2460	2460	2460	
M4	Транспортировочная	КГ	9200	9800	12350	13520	13520	
Macca	Эксплуатационная	кг	10000	10700	13350	14520	14520	
Рабочий диапазон темпер	атур наружного воздуха	°C		*	-25~+48 (-40~+48)*			

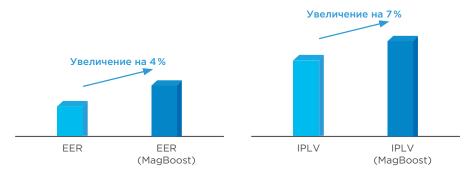
^{*} Опция низкотемпературного исполнения с рабочим диапазоном температур наружного воздуха -40 - +48 °C. Параметры указаны для следующих условий: температура выходящей/входящей жидкости 7/12 °C; этиленгликоль 40 %, фактор загрязнения испарителя 0,0176 м².°C/кВт, температура наружного воздуха +35 °C (сухой термометр).



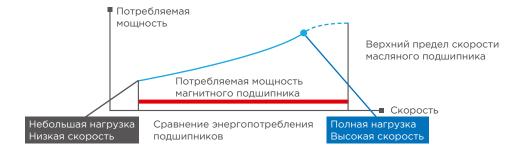
Конструктивные и функциональные особенности

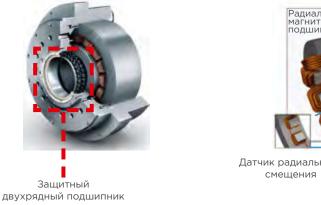
Широкий диапазон рабочих температур

Центробежный чиллер на магнитных подшипниках Midea AirBoost MAG с воздушным охлаждением использует запатентованную технологию магнитных подшипников собственной разработки и сборки Midea. Помимо высокой эффективности, стабильности и надежности, он отличается широким рабочим диапазоном, бесшумной работой и меньшими затратами на техническое обслуживание. Система включает в себя множество передовых технологий Midea, включая последовательное двухступенчатое сжатие, аэродинамическую технологию, управление магнитными подшипниками и высокоэффективные синхронные двигатели с постоянными магнитами. Это ваш лучший выбор для различного применения, включая промышленные объекты, коммерческие здания, центры обработки данных, больницы, торговые центры, аэропорты, отели. Предоставляем клиентам эффективное и энергосберегающее решение для экологически чистого строительства.


- * Серия MAMC_A-FB3Y
 ** Серия MAMC_A-FB3YL (с опцией низкотемпературного комплекта)
 *** Серия MAMC_A-FB3Y-FC (с опцией Freecooling)

Безмасляные и высокоэффективные

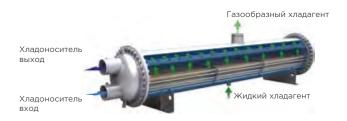

Центробежные чиллеры серии AirBoost MAG сочетают в своей конструкции технологию магнитных подшипников, аэродинамическую технологию газового тракта, синхронный электродвигатель с постоянными магнитами и технологию испарения из сплошной падающей пленки. Кроме этого, используется уникальная конструкция двухступенчатого сжатия Midea, которая повышает энергоэффективность при полной нагрузке на 4% и при частичной нагрузке — на 7%* по сравнению с традиционными центробежными чиллерами с магнитными подшипниками.


^{*} Приведенные данные получены в результате сравнения средней энергоэффективности новых и предыдущих поколений чиллеров Midea с магнитными подшипниками

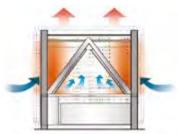
Технология магнитных подшипников

- Магнитный подшипниковый узел, включающий радиальный магнитный подшипник, упорный магнитный подшипник и датчик положения, отличается низким энергопотреблением, высокой несущей способностью и высокой надежностью.
- Использование магнитных подшипников позволяет исключить дополнительные потери на нагрев в парах трения. Потребляемая мощность магнитного подшипника составляет всего 0,4 кВт. Это приблизительно от 2 до 10 % энергопотребления, характерного для масляных подшипников.

- Чем выше скорость, тем более энергоэффективным является магнитный подшипник по сравнению с масляным подшипником.
- Контроль положения подшипника 20 000 раз в секунду позволяет производить мгновенную регулировку усилий подшипника и обеспечивать оптимальное положение для левитации ротора.
- Технология интеллектуальной компенсации вибраций используется для контроля скорости двигателя, снижения вибраций и шума в режиме реального времени.


Единый корпус компрессора

Компрессор на магнитных подшипниках, двигатель, система управления подшипниками и ЧРП собраны в единую конструкцию, что позволяет уменьшить габариты системы охлаждения на 50% по сравнению с обычными системами. Компрессор имеет степень защиты IP67, что обеспечивает его защиту от воды, коррозии и пыли.


Испаритель затопленного типа

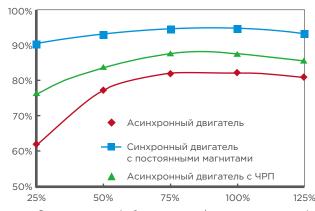
- Затопленный испаритель высокой эффективности.
- Крышки с обеих сторон теплообменника можно снять для облегчения обслуживания.
- Конструкция позволяет равномерно распределить хладагент, оптимизировать теплообмен и повысить эффективность работы.
- Специальная конструкция перегородок позволяет интенсифицировать теплообмен.
- Выход паров хладагента сверху предотвращает всасывание жидкости компрессором, что повышает надежность чиллера.

Конденсатор

М-образная конструкция обеспечивает высокую эффективность теплообмена и компактность чиллера.

Электронный регулирующий вентиль (ЭРВ)

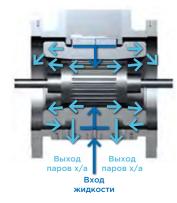
Высокоточная регулировка для обеспечения стабильной и эффективной работы агрегата.



Технология синхронного электродвигателя с постоянными магнитами

- Эффективность электродвигателя превышает 96 % во всем рабочем диапазоне, при этом максимальная эффективность достигает 97 %.
- Технология пространственно-векторной широтно-импульсной модуляции (SVPWM) используется для регулирования скорости. Точная и эффективная работа достигается в соответствии с изменениями условий эксплуатации. Пусковой ток небольшой, рабочий ток низкий, поэтому эксплуатационные расходы на электроэнергию в течение всего срока эксплуатации невелики.
- Система контроля температуры статора и удлинение вала ротора в режиме реального времени обеспечивают точное и высоконадежное охлаждение двигателя.

Электродвигатель с постоянными магнитами



Скорость нагрузки (рабочая мощность / номинальная мощность)

Технология кольцевого охлаждения электродвигателя

- Инновационная технология кольцевого охлаждения позволяет эффективно охлаждать электродвигатель по всей площади (360°), что дополнительно увеличивает его эффективность.
- Пары холодильного агента возвращаются в нижнюю часть двигателя. В полости электродвигателя не скапливается жидкость, поэтому ротор не подвержен риску жидкостного вибровозбуждения.

■ Двигатель имеет изоляцию класса F (155°C), три встроенных датчика температуры обмотки и трехступенчатую температурную защиту, что существенно увеличивает его надежность.

Технология контроля подшипников

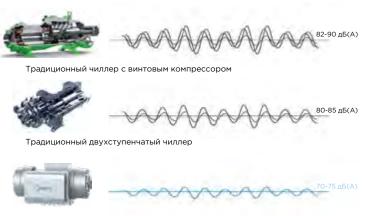
- В системе управления подшипниками используется перспективная технология компенсации вибраций, которая определяет и контролирует положение на высокой частоте, чтобы эффективно снизить воздействие вибрации на вращающийся вал вследствие дисбаланса.
- Динамическое сканирование и регулировка положения с частотой 20 кГц, а также управление положением с микронной точностью обеспечивают точное положение левитации вала.

Резервный подшипник с длительным сроком службы

- В компрессоре установлено два комплекта резервных подшипников в два ряда. Резервный подшипник рассчитан на выполнение более 300 операций приема вращающегося вала при работе на высокой скорости (>20 000 об/мин). Количество операций приема вращающегося вала резервными подшипниками не ограничено при работе на околонулевой скорости (<300 об/мин).</p>
- В резервном подшипнике используется набор высокопрочных тел качения и демпфирующее амортизирующее кольцо, чтобы эффективно остановить высокоскоростное вращение ротора в случае отказа системы магнитных подшипников. Это позволяет избежать износа между магнитным подшипником, датчиком и ротором и, как следствие, повреждения компрессора.

Аэродинамическая технология газового тракта

Математическое моделирование, использованное при конструировании компрессора, а именно — рабочего колеса и газового тракта, позволило оптимизировать общую аэродинамическую эффективность, увеличить КПД компрессора и снизить уровень шума.



Анализ поля потока при последовательном двухступенчатом сжатии

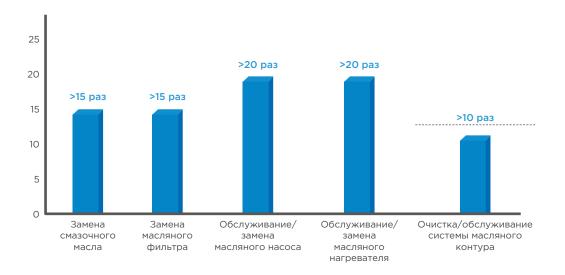
Низкий уровень шума

- Отсутствие физического контакта между движущимися металлическими частями обеспечивает низкий уровень вибраций и очень тихую работу.
- В специальной конструкции компрессора снижен пневматический шум при прохождении хладагента через рабочее колесо и диффузор, а также используются сопряжения «твердое тело газ твердое тело», чтобы рассеять высокочастотный шум и добиться идеальной звукоизоляции.

Чиллер серии AirBoost MAG с магнитными подшипниками

Регулирование с совместным использованием нескольких технологий

- Центробежный чиллер серии AirBoost MAG с магнитными подшипниками оснащен инвертором и впускным направляющим аппаратом (IGV) для регулирования холодопроизводительности.
- Если нагрузка превышает 15% в нормальных условиях эксплуатации, производительность регулируется исключительно за счет изменения скорости вращения, чтобы избежать дополнительных потерь.



Входной направляющий аппарат (IGV)

Снижение затрат на техническое обслуживание

- Благодаря функции самопроверки состояния магнитных подшипников компрессор с магнитными подшипниками может работать без необходимости регулярного технического обслуживания и контроля за износом подшипников.
- По сравнению с традиционными чиллерами с масляными подшипниками, компрессор без масла позволяет сэкономить на техническом обслуживании, поскольку не требуется регулярно проверять качество масла, производить замену масла и масляного фильтра, производить очистку масляной системы и проверять износ подшипников.
- После многолетней эксплуатации в теплообменнике традиционного чиллера накапливается масло, что существенно влияет на его теплообменные свойства, ухудшая энергоэффективность и увеличивая потребление электроэнергии. В центробежном чиллере с магнитными подшипниками испаритель остается незагрязненным и энергоэффективным в течение всего срока эксплуатации, поэтому серия MagBoost оптимальна для длительной бесперебойной работы в режиме охлаждения, например, в промышленных проектах и центрах обработки данных.

Панель управления:

- цветной сенсорный экран с диагональю 7 дюймов;
- отображение рабочих параметров в режиме реального времени (температура, давление и др.);
- установка трехуровневого пароля для предотвращения несанкционированного доступа;
- запись подробной информации о неисправностях. Функция памяти при отключении питания;
- таймер включения и выключения;
- возможность объединения до 8 чиллеров по принципу ведомый/ведущий.

AirBoost MAG

Модель			MAMC350A-FB3Y	MAMC390A-FB3Y	MAMC425A-FB3Y			
	Мощность охлаждения	кВт	352.0	390.0	422.0			
	Входная мощность	кВт	92.1	105.4	117.2			
Параметры	EER		3.82	3.70	3.60			
	IPLV.IP		6.37	6.33	6.30			
	Тип		Центі	ообежный на магнитных подшип	никах			
Компрессор	Количество	шт.	1					
Регулирование мощности			Бесступенчатое регулирование (25—100%)					
Хладагент Тип			R134a					
Электропитание		В, Ф, Гц	380—400, 3, 50					
	Тип конденсатора		Медно-алюминиевый					
Сторона воздуха	Кол-во вентиляторов	шт.	8					
	Потребляемая мощность	кВт	1.8					
	Тип		Кожухотрубный, затопленный					
Иопаритоли	Диаметр подключения	ММ		DN150				
Испаритель	Расход воды	м³/ч	60.5	67.0	72.5			
	Макс. рабочее давление	МПа	1.0					
	Длина	ММ	5240					
Габаритные размеры	Ширина	ММ	2300					
	Высота	ММ	2565					
Масса	Транспортировочная	КГ	3800					
	Эксплуатационная	КГ		4000				

ПРИМЕЧАНИЕ

1. Вход/выход охлажденной воды =12°C / 7°C; температура наружного воздуха 35°C по сухому термометру.

^{2.} В результате постоянного совершенствования продукта вышеуказанные параметры могут изменяться. Пожалуйста, ознакомьтесь с технической документацией оборудования и его характеристиками.

Модельный ряд и производительность

MWCC(H)_A

Модульный чиллер с водяным охлаждением конденсатора — это устройство для подготовки холодной (теплой) воды в системах кондиционирования воздуха для обеспечения работы фанкойлов и центральных кондиционеров. Системы холодоснабжения на базе модульных чиллеров позволяют обеспечивать поэтапный ввод объекта в эксплуатацию.

Модульная конструкция обеспечивает широкий диапазон производительности: от 164,5 до 7696 кВт по холоду и от 170 до 8496 кВт по теплу.

Два варианта конструктивного исполнения — в корпусе и без обеспечивают гибкость монтажа.

Модельный ряд

MWCC(H)242A-SA3

MWCC(H)362A-SA3

MWCC(H)481A-SA3

Модель	MWCH_A-SA3	155	242	362	481	Исполнение	
Холодопроизводительность, кВт		164.5	254.5	379	506		
Теплопроизводительность, кВт		170	268.5	400	531	Без корпуса	

Модель	MWCC_A-SA3	155	242	362	481	Исполнение
Холодопроизводительность, кВт		155	242.5	362	481	Facularia
Теплопроизводительность, кВт		-	-	-	-	Без корпуса

MWCC(H)155A-SA3C

MWCC(H)242A-SA3C

MWCC(H)362A-SA3C

MWCC(H)481A-SA3C

Модель MWCH_A-SA3C	155	242	362	481	Исполнение
Холодопроизводительность, кВт	164.5	254.5	5 379 506		P KODEVCO
Теплопроизводительность, кВт	170	268.5	400	531	В корпусе

Модель MWCC_A-SA3C	155	242	362	481	Исполнение
Холодопроизводительность, кВт	155	242.5	362	481	
Теплопроизводительность, кВт	-	-	-	-	В корпусе

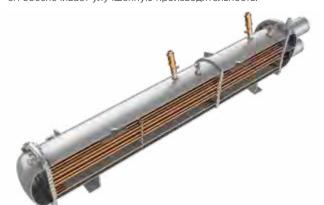
Конструктивные и функциональные особенности

MWCC(H)_A

Компрессор

Спиральный компрессор Danfoss обеспечивает низкий уровень шума и длительный срок службы.

Испаритель

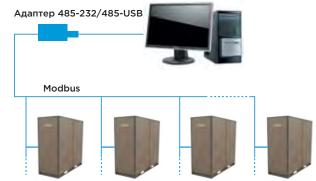

Кожухотрубный испаритель с внутренними перегородками увеличивает эффективность теплообмена.

В холодильный контур включен высокоточный электронный регулирующий вентиль (ЭРВ), обеспечивающий оптимальное заполнение испарителя хладагентом.

Конденсатор

Конденсатор кожухотрубного типа обладает высокой устойчивостью к воздействию воды. Легко поддается внутренней очистке и техническому обслуживанию, а его конструкция с переохлаждением обеспечивает улучшенную производительность.

Проводной сенсорный пульт KJRM-120D/BMK-E в комплекте


Проводной пульт управления, поставляемый в комплекте с чиллером, позволяет управлять как отдельным агрегатом, так и модульной группой до 16 чиллеров.

Возможно изменение основных параметров работы, отображение аварийных кодов и установка таймера, а также подключение к системе диспетчеризации по протоколу ModBus.

Система управления зданием

Система управления

- Проводной контроллер обеспечивает централизованное управление 16 устройствами.
- Управление последовательностью запуска и остановки.
- Возможность просматривать рабочее состояние и неисправности.
- Функция памяти при отключении электропитания.

Чиллеры могут быть подключены к BMS по протоколу Modbus.

Тепловой насос

Модель MWCH_A-SA3 (C)			155	242	362	481	
	Холодопроизводительность	кВт	164.5	254.5	379	506	
Охлаждение	Потребляемая мощность	кВт	28.2	43.6	65	86.5	
	Энергоэффективность EER		5.83	5.83	5.83	5.85	
	Теплопроизводительность	кВт	170	268.5	400	531	
Нагрев	Потребляемая мощность	кВт	34.6	54.3	81.3	108.4	
	Энергоэффективность СОР		4.49	4.94	4.92	4.89	
	Тип			Герметичный спира	альный компрессор	*	
Компрессор	Контур 1	шт.	1	1	2	2	
	Контур 2	шт.	1	1	1	2	
Регулирование произ	водительности	%	50/100	50/100	33/67/100	50/100	
	Тип			R4	IOA	·	
Хладагент	Контур 1	КГ	8.5	16	18	34	
	Контур 2	КГ	8.5	16	36	34	
Источник питания	······	В, Ф, Гц	380-415, 3, 50				
Максимальный рабочий ток		А	90	144	216	288	
Пусковой ток		А	305	485	557	629	
	Тип	1	Кожухотрубный				
	Расход воды	м³/ч	28.29	43.77	65.19	87.03	
Испаритель	Перепад давлений по воде / охл	кПа	43	59	49	53	
	Присоединительный размер	ММ	DN80	DN80	DN125	DN125	
	Тип	1		Кожухо	трубный	·	
IZ	Расход воды	м³/ч	35.37	54.72	81.49	108.8	
Конденсатор	Перепад давлений по воде	кПа	25	80	68	78	
	Присоединительный размер	ММ	DN80	DN80	DN125	DN125	
	Длина	ММ	1980	2540	2540	3130	
Размеры	Ширина	ММ	750	750	1050	1050	
	Высота	ММ	1800	2040	2040	2040	
Macca	MWCH_A-SA3	KF	900	1100	1950	2250	
транспортировочная	MWCH_A-SA3C	KF	1000	1200	2100	2450	
Масса	MWCH_A-SA3	КГ	1020	1260	2200	2500	
эксплуатационная	MWCH_A-SA3C	КГ	1120	1360	2350	2700	
Уровень звукового да	вления	дБ(А)	64	65	67	68	

Защита от высокого/низкого давления; защита от превышения температуры на стороне нагнетания компрессора;

защита от повышенного и пониженного напряжения; защита по расходу воды;

защита от перегрузки компрессора; предохранительный клапан;

защита от замерзания.

Номинальная холодопроизводительность указана для следующих условий:

- температура на входе/выходе охлажденной воды 12/7°С; температура охлаждающей воды на входе и на выходе 25/30°С.

В стандартном исполнении предусмотрены следующие защитные

- Номинальная теплопроизводительность указана для следующих условий:
 температура нагретой воды на выходе +45°C, расход воды = расход воды через испаритель в режиме охлаждения.
 температура охлаждаемой воды на входе 10°C, расход воды = расход воды через конденсатор в режиме охлаждения.

Только холод

Модель MWCC_A-SA3 (C)			155	242	362	481	
	Производительность	кВт	155	242.5	362	481	
	Потребляемая мощность	кВт	29	45	67.5	89.8	
	Энергоэффективность (ЕЕР	2)	5.34	5.38	5.36	5.35	
	IPLV		6.42	6.45	6.44	6.43	
	Компрессор	Тип		Герметичный спира	альный компрессор		
(омпрессор	Контур 1	кол-во	1	1	2	2	
	Контур 2	кол-во	1	1	1	2	
Регулирование произ	водительности		50/100	50/100	33/67/100	50/100	
	Тип			R41	0A		
Кладагент	Конту	р1 кг	8.5	16	18	34	
	Конту	р2 кг	8.5	16	36	34	
1 Сточник питания	.l	В, Ф, Гц		380-415, 3, 50			
Максимальный рабочий ток		A	90	144	216	288	
Тусковой ток		А	305	485	557	629	
	Тип			Кожухотрубный			
4	Расход воды	м³/ч	26.66	41.71	62.26	82.73	
1спаритель	Перепад давлений по воде	кПа	39	54	45	47	
	Присоединительный размер	ММ	DN80	DN80	DN125	DN125	
	Тип			Кожухот	грубный		
	Расход воды	м³/ч	33.33	52.14	77.83	103.4	
Конденсатор	Перепад давлений по воде	кПа	22	73	63	70	
	Присоединительный размер	ММ	DN80	DN80	DN125	DN125	
	Длина	ММ	1980	2540	2540	3130	
Размеры	Ширина	ММ	750	750	1050	1050	
	Высота	ММ	1800	2040	2040	2040	
Масса транспортировочная	MWCC_A-SA3	КГ	900	1100	1950	2250	
	MWCC_A-SA3C	КГ	1000	1200	2100	2450	
Macca	MWCC_A-SA3	кг	1020	1260	2200	2500	
експлуатационная	MWCC_A-SA3C	КГ	1120	1360	2350	2700	
Уровень звукового да	вления	дБ(А)	64	65	67	68	

В стандартном исполнении предусмотрены следующие защитные устройства

Защита от высокого /низкого давления; защита от превышения температуры на стороне нагнетания компрессора; реле контроля фаз; защита от повышенного и пониженного напряжения; защита по расходу воды; защита от перегрузки компрессора; предохранительный клапан; защита от замерзания,

Номинальная холодопроизводительность указана для следующих условий: - температура на входе/выходе охлажденной воды 12/7°С; - температура охлаждающей воды входе и на выходе 30/35°С.

Модельный ряд и производительность

MWSC_C MWSC_D MWSH B

Винтовые чиллеры с водяным охлаждением конденсатора Midea оснащены передовыми винтовыми компрессорами с двумя роторами и высокоэффективным конденсатором. В них используется экологически чистый хладагент R134a. Под брендом Midea представлены несколько видов винтовых чиллеров разной энергоэффективности, отличающиеся типом компрессора с постоянной частотой вращения электродвигателя и частотным регулированием производительности.

Оптимизированная конструкция и повышенная эффективность теплообмена обеспечивают наилучшую работу агрегата как при полной, так и при частичной нагрузке. В изделиях реализован ряд запатентованных технологий. Оборудование применяют в проектах с переменной нагрузкой на систему кондиционирования воздуха и длительным временем работы при частичной нагрузке. Ряд изделий получили сертификат AHRI и сертификат энергоэффективного продукта и внесли большой вклад в экономию энергии и сокращение выбросов, что делает их идеальным выбором для кондиционирования воздуха в зеленых зданиях.

Модельный ряд

MWSC310-1930C-FB3ZF

MWSC320-1920D-FB3YXF

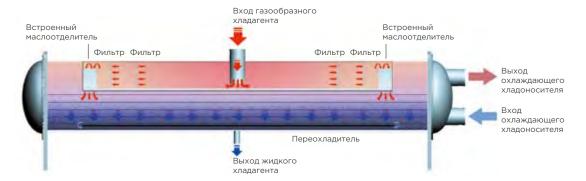
MWSH335~2145B-FB3HF

компрессор

Испаритель высокоэффективный

производительности

Испарител с бесступенчатым регулированием

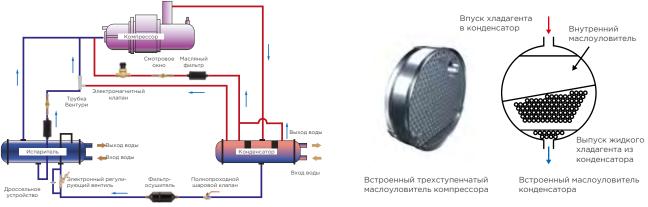

Закрытая конструкция двигателя

Двигатель установлен на линии всасывания фреона в компрессор, принятый способ охлаждения обмоток вместе с уникальной конструкцией входного тракта обеспечивает полное охлаждение двигателя.

Компрессор сконструирован для работы с большой производительностью, двигатель имеет прямой привод к компрессору, благодаря чему достигается высокая эффективность.

Конденсатор

- Оптимизированная конструкция переохладителя увеличивает температуру переохлаждения и снижает потери давления в переохладителе, повышая эффективность теплообмена.
- Встроенный отделитель масла способствует улучшению возврата масла в компрессор.
- Конструкция позволяет обеспечить равномерный теплообмен без образования застойных зон.



Точный контроль холодопроизводительности

- Холодильный контур оснащен электронным регулирующим вентилем и дроссельным устройством для точного контроля заполнения хладагентом испарителя и поддержания температуры хладоносителя.
- Электронный регулирующий вентиль характеризуется быстрым откликом, точным регулированием и широким диапазоном регулировки.

Надежная система смазки компрессора

Система возврата масла

MWSC_C MWSC_D MWSH B

Подача масла

В данной системе используется подача масла за счет разницы давлений. Все движущиеся части компрессора могут хорошо смазываться без внешнего масляного насоса.

Возврат масла

Первое отделение масла: компрессор снабжен трехступенчатым маслоуловителем для минимизации малого уноса масла.

Второе отделение масла: встроенный высокоэффективный маслоуловитель конденсатора повышает эффективность отделения масла до значения выше 99,99%, что позволяет системе осуществлять оптимальный возврат масла как при частичной, так и при полной нагрузке, обеспечивая надежную и стабильную работу системы и расширяя рабочий диапазон чиллера.

Двойная система возврата масла: эта система принимает возвращаемое посредством отделения масло и впрыскивает его через трубку Вентури. Предусмотрен подогрев масла. Система управления подогревает смазочное масло в соответствии с состоянием блока, чтобы поддерживать необходимую вязкость для лучшей смазки пар трения компрессора. Внешний масляный фильтр можно легко заменить.

Бесшумная работа

- Уровень звукового давления составляет всего 65 дБ(А) при частичной нагрузке.
- Стандартная амортизирующая прокладка установлена между опорами компрессора и фундаментом, обеспечивая виброизолирующий эффект.
- Встроенный глушитель линии нагнетания компрессора минимизирует передачу шума.

Безопасность и защита

Интеллектуальный контроль безопасности: система отслеживает изменение рабочих параметров агрегата и плавно корректирует рабочее состояние для обеспечения безопасности работы.

Уровни защиты: установка снабжена средствами защиты для повышения безопасности и надежности работы (защита по давлению, температуре, току и др.).

Заводской контроль

Тщательные заводские испытания: перед отгрузкой все оборудование проходит всесторонние испытания. Для установки агрегата необходимо подключить только трубы и источник электропитания.

Интеллектуальная логика управления

Интеллектуальное управление холодопроизводительностью. Изменения тепловой нагрузки прогнозируются на основании предыстории. Тепловая нагрузка пересматривается в реальном времени, чтобы предотвратить колебания температуры охлажденной воды.

Изменение температуры при обычном регулировании

Колебания температуры при управлении с прогнозированием

MWSC_C MWSC_D MWSH B

Интеллектуальная система управления

- Интеллектуальное управление нагрузкой: система управления прогнозирует изменения нагрузки в режиме реального времени в соответствии с целевым значением и историей уровня нагрузок, корректирует производительность и снижает энергопотребление системы.
- Интеллектуальное управление защитой: система управления отслеживает тенденцию изменения каждого параметра чиллера и периодически корректирует рабочее состояние агрегата так, чтобы тот работал в безопасном интервале.
- Интеллектуальное управление отказами: при отказе блока система не только принимает соответствующие меры защиты, но и записывает переходные рабочие параметры отказа, облегчая последующую диагностику и устранение неисправностей.
- Оптимальная работа в течение всего времени эксплуатации обеспечивается одновременным использованием высокоточных датчиков и алгоритма управления.

Экранный интерфейс

Безопасный экологичный хладагент

R134a— экологически безопасный хладагент, не разрушающий озоновый слой и обладающий высокой эффективностью. R134a соответствует требованиям Монреальского протокола.

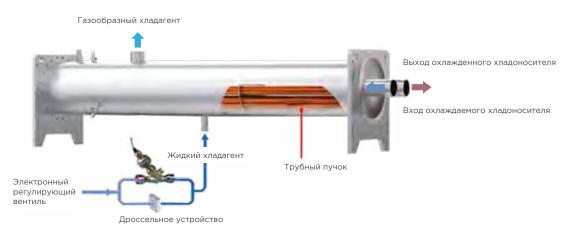
R134a SCREW

MWSC_C-FB3ZF

Параметр	Рабочий диапазон
Температура воды на входе в испаритель	8-20°C
Температура воды на выходе из испарителя	5-15°C (опционально от -6 до +15°C)
Температура воды на входе в конденсатор	19-40°C
Температура воды на выходе из конденсатора	22-45°C
Колебания напряжения	±10% от номинального напряжения
Дисбаланс напряжения	±2%
Частота сети электропитания	±2 % от номинальной частоты
Температура окружающего воздуха при работе	6-40°C
Температура окружающего воздуха при хранении и транспортировке	-20-46°C

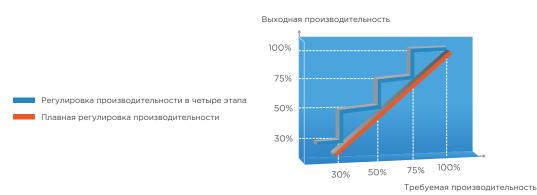
Современный двухроторный винтовой компрессор

Чиллер Midea с водяным охлаждением конденсатора оснащен полугерметичным винтовым компрессором, снабженным винтами с 5—6 зубьями асимметричной формы. Винты изготовлены на высокоточных ЧПУ, каждая их часть обладает точными размерами, зазоры винтовой пары минимальны, это снижает сопротивление трения и потери, обеспечивая малошумную работу и длительный срок службы.



- Высокоточная машинная обработка и сборка позволяют обеспечить зазор между винтами в несколько микрон, что уменьшает переток между полостями высокого и низкого давления. Размер зазора не изменяется в течение продолжительной работы, это обеспечивает максимальную производительность.
- Полугерметичный компрессор сбалансирован и имеет низкий уровень шума и вибрации.
- Не требуется создание дополнительной системы кондиционирования помещения, где размещен чиллер.
- Надежность эксплуатации обеспечивается за счет высокоточной обработки корпуса и других деталей компрессора.

MWSC_C-FB3ZF

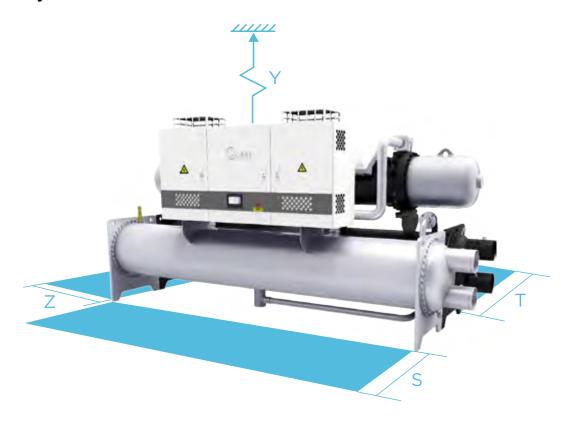

Испаритель затопленного типа

- Затопленный испаритель высокой эффективности.
- Крышки с обеих сторон теплообменника можно снять для облегчения обслуживания.
- Конструкция позволяет равномерно распределить хладагент, оптимизировать теплообмен и повысить эффективность работы.
- Специальная конструкция перегородок предотвращает всасывание жидкости компрессором, что повышает надежность агрегата.

Плавная регулировка мощности

Диапазон регулировки мощности для одного компрессора составляет от 30 до 100 %, для двух компрессоров — от 15 до 100 %. Система регулировки производительности состоит из золотникового клапана регулировки производительности, электромагнитного клапана и поршня давления масла. Чиллеры обладают плавным регулированием производительности.

MWSC_C-FB3ZF


Модель	MWSC_C	-FB3ZF	310	420	520	600	690	830	950	
Холодопроизводител	льность	кВт	307	419	517	596	688	831	952	
Потребляемая мощн	ОСТЬ	кВт	53	72	87	100	115	138	155	
EER		-	6	6	6	6	6	6	6	
IPLV		-	7	7	7	8	8	9	9	
	Количество	шт.	1	1	1	1	1	1	1	
Компрессор	Тип	-			Полугермети	чный винтово	й компрессор)		
	Схема включения	-				Υ/Δ				
Регулирование прои	зводительности					30-100%				
V	Тип	-				R134a				
Хладагент	Заправка	KΓ	150	150	150	195	205	275	280	
Электропитание	ектропитание			380 В, 3 фазы, 50 Гц						
Номинальный ток		А	91	124	150	172	199	238	267	
Максимальный рабоч	ний ток	А	137	169	206	260	301	369	400	
Пусковой ток		А	258	292	447	506	650	560	583	
	Расход воды	м³/ч	47	65	80	92	106	128	147	
Испаритель	Перепад давления по воде	кПа	56	48	53	55	52	55	64	
	Присоединительный размер	MM	DN125	DN150	DN150	DN150	DN150	DN200	DN200	
	Расход воды	м³/ч	60	81	100	115	133	160	183	
Конденсатор	Перепад давления по воде	кПа	50	49	53	59	59	61	60	
	Присоединительный размер	MM	DN125	DN150	DN150	DN150	DN150	DN200	DN200	
	Длина	MM	3513	3513	3513	3538	3538	3601	3601	
Размеры	Ширина	MM	1200	1215	1200	1400	1400	1588	1618	
	Высота	MM	1690	1829	1953	1933	1933	2109	2150	
Масса транспортиро	вочная	KΓ	2507	2454	2787	3445	3532	4024	4543	
Масса эксплуатацион	 ная	КГ	2677	2664	3017	3735	3862	4414	4953	

Модель	MWSC_C	-FB3ZF	1030	1125	1225	1380	1550	1740
Холодопроизводител	ьность	кВт	1027	1123	1225	1376	1549	1737
Потребляемая мощно		кВт	171,8	187,2	205,1	228	252,7	279,9
EER		-	5,97	5,99	5,97	6,03	6,13	6,2
IPLV		-	7,27	7,05	8,08	8,26	9,3	9,33
	Количество	шт.	1	1	2	2	2	2
Компрессор	Тип	-		По	лугерметичный в	интовой компре	ccop	*
	Схема включения	-			Y	/ Δ		
Регулирование произ	вводительности		30-1	100%		15-10	00%	
	Тип	-			R1:	34a		
Хладагент	Заправка	KF	325	325	375	380	390	465
Электропитание			380 В, 3 фазы, 50 Гц					
Номинальный ток		А	296,6	323,2	154,0 / 200,2	196,8 / 196,8	218,1 / 218,1	241,6 / 241,6
Максимальный рабочий ток		А	396,8	459,4	235,0 / 301,0	301,0 / 301,0	335,0 / 335,0	369,0 / 369,0
Пусковой ток		А	785	785	479,0 / 650,0	650,0 / 650,0	518,0 / 518,0	560,0 / 560,0
	Расход воды	м³/ч	158,6	173,4	189,3	212,5	239,3	268,3
Испаритель	Перепад давления по воде	кПа	52,8	52,3	72,8	85,1	75,6	71,8
	Присоединительный размер	ММ	DN200	DN200	DN200	DN200	DN200	DN250
	Расход воды	м³/ч	198,4	216,9	236,8	265,5	298,3	334
Конденсатор	Перепад давления по воде	кПа	56,2	56,8	76	89,3	89,8	91,6
	Присоединительный размер	ММ	DN200	DN200	DN200	DN200	DN200	DN250
	Длина	ММ	3613	3613	4518	4518	4720	4784
Размеры	Ширина	ММ	1628	1628	1617	1617	1737	1902
	Высота	ММ	2291	2291	2291	2291	2291	2341
Масса транспортиров	вочная	KF	4904	5080	5924	6057	6355	6889
Масса эксплуатацион	ная	КГ	5404	5600	6484	6627	6985	7619

- 1. Номинальная холодопроизводительность измерялась по стандарту AHRI 550/590:
- на стороне испарителя вода на входе 12,22 °C, вода на выходе 6,67 °C, коэффициент загрязнения 0,0176 м² · °C/кВт; на стороне конденсатора вода на входе 29,44 °C, вода на выходе 34,61 °C, коэффициент загрязнения 0,044 м² · °C/кВт.
- 2. В стандартном исполнении чиллеры имеют один холодильный контур (исполнение двух независимых контуров для чиллеров с двумя компрессорами доступно опционально).
- 3. Рабочее давление на стороне воды для испарителя и конденсатора составляет 1,0 МПа (по запросу опционально доступно 1,6; 2,0 МПа).
- 4. В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены

MWSC_C-FB3ZF

Зоны обслуживания

Модель Размер, мм	s	7	z	Y
MWSC310-1125C-FB3ZF	600	600	3200	1000
MWSC1225-2080C-FB3ZF	600	600	4200	1000

Z: Зона для замены труб трубного пучка.

Опции

Наименование	Стандарт	Опционально
Электропитание	380 В, 3 фазы, 50 Гц	400/415 В, 3 фазы, 50 Гц; 380/440/460 В, 3 фазы, 60 Гц
Тип соединения трубопроводов	Муфта Victaulic	Фланец
Рабочее давление воды	1.0 МПа	1.6 МПа, 2.0 МПа
Виброопоры	-	Пружинные виброопоры
Протокол связи	Modbus-RTU (RS485)	BACnet IP, BACnet MS/TP (RJ-45 port)
Температура воды на выходе конденсатора	45°C	до 55°C
Теплоизоляция	20 мм	40 мм
Реле протока на стороне испарителя	V	V
Выносная панель управления	X	V
Автоматическая система очистки трубного пучка	X	V

Примечание:Возможность комплектации не указанными опциями требует отдельного уточнения.

R134a SCREW INVERTER MWSC_D-FB3YXF

В высокоэффективном инверторном чиллере Midea с винтовым компрессором и водяным охлаждением конденсатора используется технология оптимизации соотношения объемов. По сравнению с чиллерами с винтовым компрессором и электродвигателем постоянной производительности, этот чиллер более эффективен, стабилен (улучшение до 30 %) и требует меньших эксплуатационных расходов. Чиллер применяют в проектах с сильными колебаниями тепловой нагрузки систем кондиционирования воздуха и длительным временем работы при частичной нагрузке (например, в средних и крупных общественных и гражданских зданиях, таких как гостиницы, офисные здания, больницы, заводы и торговые центры).

Диапазон холодопроизводительности чиллера Midea с винтовым компрессором составляет от 316 до 1916 кВт. Оборудование получило сертификат АНRI и сертификат энергоэффективного продукта и внесло большой вклад в экономию энергии и сокращение выбросов в строительстве зеленых городов, что делает его идеальным выбором для кондиционирования воздуха в зеленых зданиях.

Диапазон рабочих температур

Параметр	Рабочий диапазон
Температура воды на входе в испаритель	8-20°C
Температура воды на выходе из испарителя	5~15°C (опционально от -6 до +15°C)*
Температура воды на входе в конденсатор	19-40°C
Температура воды на выходе из конденсатора	22~45°C
Колебания напряжения	±10 % от номинального напряжения
Дисбаланс напряжения	±2%
Частота сети электропитания	±2% от номинальной частоты
Температура окружающего воздуха при работе	6~40°C
Температура окружающего воздуха при хранении и транспортировке	-20~46°C

Выход за рабочий диапазон окажет негативное влияние на нормальные эксплуатационные характеристики изделия.

Технология оптимизации Vi разработанного Midea двухвинтового инверторного компрессора

Технология оптимизации коэффициента сжатия (объемной подачи компрессора) использует кривые характеристик компрессора, инвертора и двигателя, чтобы максимизировать производительность и надежность инверторного винтового компрессора. Максимальный изоэнтропийный КПД компрессора с технологией Vi составляет 76%, что намного выше, чем у компрессоров, в которых применяются другие методы регулирования.

Старт

Двигатель запускается на низкой скорости, золотниковый клапан быстро перемещается в среднее положение, поэтому запуск происходит быстро и эффективно.

Полная нагрузка

Скорость двигателя увеличивается, и одновременно определяется наилучшее положение Vi золотникового клапана. Встроенный алгоритм анализирует рабочие параметры и оптимизирует положение золотникового клапана и скорость двигателя. Сначала перемещается золотниковый клапан, затем изменятся скорость двигателя для точного соответствия нагрузке.

Снижение нагрузки

Скорость двигателя уменьшается, и одновременно определяется наилучшее положение Vi золотникового клапана. Встроенный алгоритм анализирует рабочие параметры и оптимизирует положение золотникового клапана и скорость двигателя. Сначала перемещается золотниковый клапан, затем изменятся скорость двигателя для точного соответствия нагрузке.

Двигатель замедляется, и золотниковый клапан перемещается в самое нижнее положение. Двигатель останавливается, когда его скорость достигает минимального установленного значения.

Конструкция чиллера с двумя компрессорами

В чиллере с двумя компрессорами применяется параллельная установка компрессоров в одном холодильном контуре. Это позволяет значительно увеличить эффективность чиллера при частичной нагрузке, т. е. при работе одного компрессора. (Опционально доступно исполнение с двумя независимыми контурами.)

Отсутствие воздействия на энергосистему

Плавный пуск инверторной системы управления с небольшим пусковым током, значительно меньшим, чем при подключении «звезда — треугольник», существенно продлевает срок службы двигателя и снижает нагрузку на электрическую сеть.

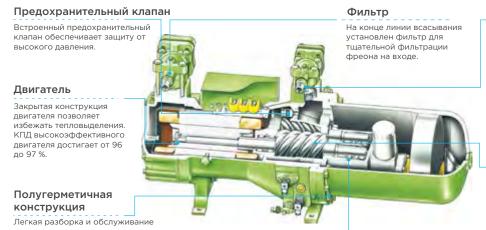
Инверторное управление производительностью

Инверторный винтовой чиллер регулирует холодопроизводительность за счет изменения частоты. КПД при частичной нагрузке инверторного чиллера значительно выше, чем у чиллера с фиксированной частотой, что значительно улучшает энергоэффективность.

ПРИМЕЧАНИЕ

В качестве примера взяты рабочие условия 7/32°C.

Точная регулировка


Инновационная технология дросселирования вихревой диафрагмой:

- гидравлическое сопротивление увеличивается, если перед диафрагмой высокое содержание газообразного хладагента, что значительно снижает потери холодопроизводительности, вызванные перепуском горячего газа при частичной нагрузке;
- если давление конденсации низкое и перед диафрагмой жидкий хладагент, то скорость потока жидкости может быть повышена, чтобы увеличить расход жидкости.

MWSC_D-FB3YXF

Высокоэффективный винтовой компрессор

- В данном оборудовании используется полугерметичный винтовой компрессор с двумя роторами. Винтовой ротор с запатентованным профилем проходит оптимизированный процесс обработки на немецком шлифовальном станке КАРР. Поверхность ребер подвергают лазерной закалке, чем обеспечивается динамическая и статическая балансировка.
- Двойные винтовые роторы имеют запатентованную асимметричную конструкцию с 5—6 зубьями, отличающуюся точностью обработки на микронном уровне и обеспечивающую низкий уровень шума и длительный срок службы.
- В компрессоре используются подшипники всемирно известного бренда SKF, которые имеют длительный срок службы, благодаря чему продолжительность непрерывной работы чиллера составляет не менее 50 000 часов.

Обратный клапан

В нагнетательной камере установлен обратный клапан, предотвращающий обратное вращение компрессора после длительной остановки.

Двухвинтовой ротор

Двухвинтовой ротор с запатентованным профилем обладает высокой эффективностью передачи газа.

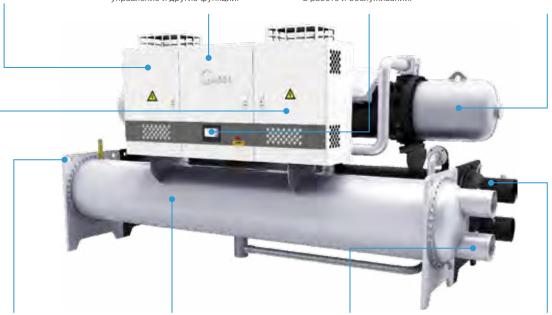
Конструкция проточного канала

Конструкция проточного канала для подачи газа

Новая конструкция электрошкафа

Настоящий конструкторский прорыв Midea.

Система управления с микрокомпьютером


Обеспечивает самодиагностику, настройку, защиту, дистанционное управление и другие функции.

Цветной дисплей с диагональю 7 дюймов

Обеспечивает удобное считывание параметров работы, удобен в работе и обслуживании.

Компрессор

Новый профиль ротора винтового компрессора обеспечил повышение эффективности компрессора.

Подъемное отверстие

Такелажная проушина предназначена для удобства перемещения чиллера при монтаже.

Конденсатор

Это устройство оснащено двусторонней усиленной высокоэффективной конденсаторной трубкой для дополнительного повышения эффективности теплообмена.

Вход и выход воды

расположены с одной стороны. Устройство удобно в монтаже, очистке и обслуживании.

Испаритель

Специально разработанная пластина для гомогенизации жидкости служит для оптимизации температурного поля и достижения оптимальной эффективности теплообмена.

R134a SCREW INVERTER

MWSC_D-FB3YXF

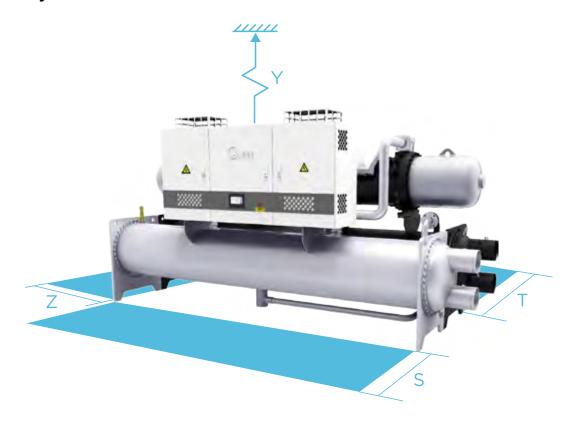
Модель		MWSC_D-FB3YXF	320	420	530	635	705	775
Холодопроизво	одительность	кВт	316,4	420,6	527,4	632,9	703,2	773,5
Потребляемая	мощность	кВт	55,0	73,6	89,9	106,7	117,4	128,4
EER		-	5,8	5,7	5,9	5,9	6,0	6,0
IPLV		-	8,5	9,0	8,7	9,0	8,8	9,2
	Кол-во	шт.	1	1	1	1	1	1
Компрессор	Тип	-		Пол	угерметичный в	интовой компре	ccop	
	Схема пуска	-			Инве	ртор		
Регулирование	производительности				30-1	00%		
······	Тип	-			R1	34a		
Хладагент	Заправка	КГ	150	150	150	195	205	275
Электропитани	ропитание 380 В, 3 фазы, 50 Гц							
Номинальный ток А		A	89,8	120,3	146,9	174,3	191,8	209,8
Максимальный рабочий ток		A	< 89.8	< 120.3	< 146.9	< 174.3	< 191.8	< 209.8
Пусковой ток		A	136,7	160,4	224,2	237,5	286,0	294,5
	Расход воды	M ³ /4	48,9	65,0	81,5	97,8	108,6	119,5
<i>Л</i> спаритель	Перепад давления по воде	е кПа	58,9	48,5	55,5	53,8	53,5	53,3
лепаритель	Присоединительный размер	ММ	DN125	DN150	DN150	DN150	DN150	DN200
	Расход воды	M ³ /4	61,5	81,8	102,2	122,4	135,9	149,3
Конденсатор	Перепад давления по воде	е кПа	52,5	49,3	54,9	57,6	61,3	58,1
конденсатор	Присоединительный размер	ММ	DN125	DN150	DN150	DN150	DN150	DN200
	Длина	MM	3513	3513	3513	3538	3538	3601
Размеры	Ширина	MM	1370	1424	1370	1591	1540	1645
	Высота	MM	1966	1966	1966	2066	2066	2281
Масса транспо	ртировочная	КГ	2597	2454	3152	3245	3597	4330
Масса эксплуа	тационная	КГ	2767	2664	3382	3555	3927	4700

Модель		MWSC_D-FB3YXF	830	915	985	1055	1160	1230
Холодопроизво	одительность	кВт	826,9	914,2	984,5	1055,0	1158,0	1231,0
Потребляемая	мощность	кВт	137,6	151,8	162,3	171,9	192,2	205,2
EER		-	6,0	6,0	6,1	6,1	6,0	6,0
IPLV		-	9,3	9,3	9,1	9,2	9,3	9,4
	Кол-во	шт.	1	1	1	1	1	2
Компрессор	Тип	-		Пол	угерметичный в	интовой компре	ссор	
	Схема пуска	-			Инве	ртор		
Регулирование	производительности				30-100%			15-100%
Хладагент	Тип	-			R1	34a		
хладагент	Заправка	КГ	275	285	285	325	325	375
Электропитани	ie				380 B, 3 ¢	азы, 50 Гц		
Номинальный т	OK	A	224,9	248,0	265,1	280,8	313,9	145,8 / 189,5
Максимальный	Максимальный рабочий ток А		< 224.9	< 248	< 265.1	< 280.8	< 313.9	< 145,8 / < 189,5
Пусковой ток		A	315,0	345,9	370,1	392,8	438,3	236,0 / 282,0
	Расход воды	м³/ч	127,8	141,2	152,1	163,0	178,9	190,2
Испаритель	Перепад давления по вод	е кПа	54,7	56,2	64,2	55,5	55,3	73,4
испаритель	Присоединительный размер	ММ	DN200	DN200	DN200	DN200	DN200	DN200
	Расход воды	м³/ч	159,7	176,5	189,9	203,2	223,6	237,8
Конденсатор	Перепад давления по вод	е кПа	60,3	60,7	64,4	58,6	59,9	78,9
Конденсатор	Присоединительный размер	ММ	DN200	DN200	DN200	DN200	DN200	DN200
	Длина	MM	3601	3601	3601	3613	3613	4518
Размеры	Ширина	ММ	1645	1723	1753	1828	1828	1727
	Высота	ММ	2281	2281	2281	2346	2346	2196
Масса транспо	ртировочная	КГ	4354	4428	4599	4944	5010	6027
Масса эксплуат	тационная	KF	4744	4838	5019	5444	5530	6587

ПРИМЕЧАНИЯ

- 1. Номинальная холодопроизводительность измерялась по стандарту AHRI 550/590:
- на стороне испарителя вода на входе 12,22 °C, вода на выходе 6,67 °C, коэффициент загрязнения 0,0176 M^2 °C/кВт; на стороне конденсатора вода на входе 29,44 °C, вода на выходе 34,61 °C, коэффициент загрязнения 0,044 M^2 °C/кВт.
- 2. В стандартном исполнении чиллеры имеют один холодильный контур (исполнение двух независимых контуров для чиллеров с двумя компрессорами доступно опционально).
- 3. Рабочее давление на стороне воды для испарителя и конденсатора составляет 1,0 МПа (по запросу опционально доступно 1,6; 2,0 МПа).
- 4. В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены.

Модель		MWSC_D-FB3YXF	1340	1410	1510	1690	1760	1920
Холодопроизво	одительность	кВт	1336,0	1406,0	1512,0	1687,0	1758,0	1916,0
Потребляемая	мощность	кВт	229,0	233,8	255,4	275,4	288,6	303,2
EER		-	5,8	6,0	5,9	6,1	6,1	6,3
IPLV		-	9,3	9,3	9,4	9,7	9,7	9,9
	Кол-во	ШТ.	2	2	2	2	2	2
Компрессор	Тип	-		Пол	угерметичный в	интовой компре	ссор	*
	Схема пуска	-			Инве	ертор		
Регулирование	производительности		*		15-10	00%		
· · · · · · · · · · · · · · · · · · ·	Тип	-			R13	34a		
Хладагент	Заправка	КГ	380	380	380	395	465	540
Электропитани	ie			-1	380 B, 3 ¢	азы, 50 Гц		1
Номинальный ток А		A	162,6 / 211,4	191,0 / 191,0	208,6 / 208,6	225,0 / 225,0	235,8 / 235,8	247,6 / 247,6
Максимальный рабочий ток А		А	< 162,6 / < 211,4	< 191,0 / < 191,0	< 208,6 / 208,6	< 225,0 / < 225,0	< 235,8 / < 235,8	< 247,6 / < 247,6
Пусковой ток		А	236,0 / 282,0	282,0 / 282,0	282,0 / 282,0	316,0 / 316,0	331,1 / 331,1	351,5 / 351,5
	Расход воды	M ³ /4	206,4	217,2	233,6	260,6	271,6	296,0
Испаритель	Перепад давления по вод	е кПа	80,8	88,5	86,0	77,1	73,4	86,6
испаритель	Присоединительный размер	ММ	DN200	DN200	DN200	DN200	DN250	DN250
	Расход воды	м ³ /ч	259,1	271,5	292,6	325,0	338,9	367,6
Конденсатор	Перепад давления по вод	е кПа	91,9	92,9	95,0	92,5	94,0	99,4
Конденсатор	Присоединительный размер	MM	DN200	DN200	DN200	DN200	DN250	DN250
	Длина	ММ	4518	4518	4518	4720	4720	4784
Размеры	Ширина	MM	1727	1727	1727	1797	1947	1962
	Высота	ММ	2196	2196	2196	2441	2491	2491
Масса транспој	ртировочная	КГ	6041	6157	6215	6643	7029	7614
Масса эксплуат	гационная	КГ	6601	6727	6815	7303	7759	8464


ПРИМЕЧАНИЯ

- 1. Номинальная холодопроизводительность измерялась по стандарту AHRI 550/590:
- на стороне испарителя вода на входе 12,22°С, вода на выходе 6,67°С, коэффициент загрязнения 0,0176 м².°С/кВт;
- на стороне конденсатора вода на входе 29,44°C, вода на выходе 34,61°C, коэффициент загрязнения 0,044 м².°C/кВт.
- 2. В стандартном исполнении чиллеры имеют один холодильный контур (исполнение двух независимых контуров для чиллеров с двумя компрессорами доступно опционально).
- 3. Рабочее давление на стороне воды для испарителя и конденсатора составляет 1,0 МПа (по запросу опционально доступно 1,6; 2,0 МПа).
- 4. В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены.

MWSC_D-FB3YXF

Зоны обслуживания

Модель Размер, мм	S	*	z	Y
MWSC320-1160D-FB3YXF	600	600	3200	1000
MWSC1230-1920D-FB3YXF	600	600	4200	1000

Z: Зона для замены труб трубного пучка.

Опции

Наименование	Стандарт	Опционально
Электропитание	380 В, 3 фазы, 50 Гц	400/415 В, 3 фазы, 50 Гц; 380/440/460 В, 3 фазы, 60 Гц
Тип соединения трубопроводов	Муфта Victaulic	Фланец
Рабочее давление воды	1.0 МПа	1.6 МПа, 2.0 МПа
Виброопоры	-	Пружинные виброопоры
Протокол связи	Modbus-RTU (RS485)	BACnet IP, BACnet MS/TP (RJ-45 port)
Температура воды на выходе конденсатора	45°C	до 55°C
Теплоизоляция	20 мм	40 мм
Реле протока на стороне испарителя	V	V
Выносная панель управления	X	V
Автоматическая система очистки трубного пучка	X	V

ПРИМЕЧАНИЕ

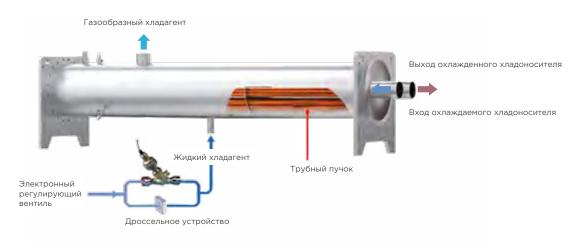
Возможность комплектации не указанными опциями требует отдельного уточнения.

MWSH_B-FB3HF

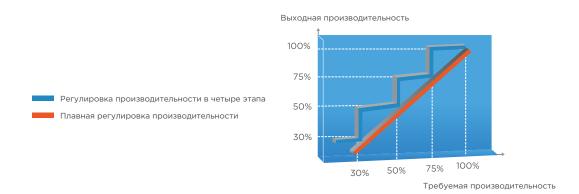
Параметр	Рабочий диапазон
Температура воды на входе в испаритель	8-25°C
Температура воды на выходе из испарителя	5-15°C (опционально от -6 до +15°C)
Температура воды на входе в конденсатор	19-50°C
Температура воды на выходе из конденсатора	22-55°C (опционально до +65°C)
Колебания напряжения	±10% от номинального напряжения
Дисбаланс напряжения	±2%
Частота сети электропитания	±2% от номинальной частоты
Температура окружающего воздуха при работе	6-40°C
Температура окружающего воздуха при хранении и транспортировке	-20-46°C

Современный двухроторный винтовой компрессор

Чиллер Midea с водяным охлаждением конденсатора оснащен полугерметичным винтовым компрессором, снабженным винтами с 5—6 зубьями асимметричной формы. Винты изготовлены на высокоточных ЧПУ, каждая их часть обладает точными размерами, зазоры винтовой пары минимальны, это снижает сопротивление трения и потери, обеспечивая малошумную работу и длительный срок службы.



- Высокоточная машинная обработка и сборка позволяют обеспечить зазор между винтами в несколько микрон, что уменьшает переток между полостями высокого и низкого давления.
 Размер зазора не изменяется в течение продолжительной работы, это обеспечивает максимальную производительность.
- Полугерметичный компрессор сбалансирован и имеет низкий уровень шума и вибрации.
- Не требуется создание дополнительной системы кондиционирования помещения, где размещен чиллер.
- Надежность эксплуатации обеспечивается за счет высокоточной обработки корпуса и других деталей компрессора.


Испаритель затопленного типа

- Затопленный испаритель высокой эффективности.
- Крышки с обеих сторон теплообменника можно снять для облегчения обслуживания.
- Конструкция позволяет равномерно распределить хладагент, оптимизировать теплообмен и повысить эффективность работы.
- Специальная конструкция перегородки предотвращает всасывание жидкости компрессором, что повышает надежность агрегата.

Плавная регулировка мощности

Диапазон регулировки мощности для одного компрессора составляет от 30 до 100 %, для двух компрессоров — от 15 до 100 %. Система регулировки производительности состоит из золотникового клапана регулировки производительности, электромагнитного клапана и поршня давления масла. Чиллеры обладают плавным регулированием производительности.

Работа чиллера в режиме теплового насоса

Режим работы чиллера в качестве теплового насоса необходим для подготовки горячего теплоносителя в конденсаторе с целью обеспечения потребителя или системы ГВС. Также широко распространена практика применения таких чиллеров для повышения температурного графика охлаждающей воды в конденсаторе. Это позволяет уменьшить площадь теплообменного оборудования, которое подготавливает охлаждающую воду. Такое решение позволяет сэкономить от 13 % капитальных затрат на систему.

Принцип работы: для теплового насоса цикл в условиях нагрева такой же, как и в условиях охлаждения (нет 4-ходового клапана). Разница между охлаждением и нагревом заключается в логике управления. В режиме теплового насоса цель управления состоит в контроле температуры воды на выходе из конденсатора, что означает, что логика управления и регулирование производительности зависят от температуры воды на выходе из конденсатора. В режиме охлаждения цель управления заключается в контроле температуры воды на выходе из испарителя, что означает, что логика управления и регулирование производительности зависят от температуры воды на выходе из испарителя.

MWSH_B-FB3HF

Модель		MWSH_B-FB3HF	335	460	550	630				
	Производительность	кВт	331,9	423,6	515,5	571,5	673,7			
0	Потребляемая мощность	кВт	61,45	76,43	94,01	103,7	120,8			
Охлаждение	EER	-	5,401	5,543	5,484	5,512	5,575			
	IPLV	-	5,803	5,933	5,920	6,094	5,805			
	Количество	шт.	1	1	1	1	1			
	Тип	-	Полугерметичный винтовой компрессор (Hanbell)							
Компрессор	Регулирование мощности	-	Бесступенчатое							
	Схема включения	-	Υ / Δ							
	Тип	-		R134a						
Хладагент	Заправка	КГ	120	135	150	175	185			
Электропитание		В, Ф, Гц		*	380, 3, 50	1				
Номинальный ток		А	106,1	132,0	162,3	179,0	208,6			
Максимальный рабо	рчий ток	А	199,8	243,1	297,1	319,9	412,4			
Тусковой ток		А	406,7	443,3	663,3	743,3	875,0			
	Расход воды	м³/ч	51,33	65,52	79,72	88,39	104,2			
Испаритель	Перепад давления по воде	кПа	28,9	29,8	28,7	29,0	29,0			
	Присоединительный размер	ММ	DN150	DN150	DN150	103,7 5,512 6,094 1 Impeccop (Hanbell) 9 175 179,0 319,9 743,3 88,39	DN200			
	Расход воды	м³/ч	65,02	82,68	100,8	111,60	131,4			
Конденсатор	Перепад давления по воде	кПа	41,4	36,2	40,2	42,5	42,3			
	Присоединительный размер	ММ	DN150	DN150	DN150	DN200	DN200			
	Длина	ММ	2713	2713	2713	2824	2875			
Размеры	Ширина	ММ	1200	1200	1200	1400	1400			
	Высота	ММ	1786	1844	1914	2102	2102			
	овочная	КГ	2180	2325	2649	3015	3140			
Масса эксплуатацис	яная	КГ	2315	2482	2823	3215	3373			

Модель		MWSH_B-FB3HF	865	910	1050	1100	1220		
	Производительность	кВт	776,5	839,1	982,1	1025	1143		
Охлаждение	Потребляемая мощность	кВт	141,9	153,4	179,4	186,6	207,1		
Охлаждение	EER	-	5,474	5,469	5,475	5,496	5,522		
	IPLV	=	6,127	6,257	5,712	5,496 6,585 2 Inpeccop (Hanbell) e 310 1#: 161.1 2#: 161.1 1#: 297.1 2#: 297.1 1#: 663.3 2#: 663.3 158.6 43.6	6,821		
	Количество	шт.	1	1	1	2	2		
/ a = 10 a a a a a	Тип	-	Полугерметичный винтовой компрессор (Hanbell)						
Компрессор	Регулирование мощности	-			Бесступенчатое				
	Схема включения	-			Υ/Δ				
V	Тип	-	R134a						
Хладагент	Заправка	КГ	210	230	270	310	330		
Электропитание		В, Ф, Гц			380, 3, 50				
Номинальный ток A 244,9 264,9 309,7				309,7		1#: 178.8 2#: 178.8			
Максимальный рабоч	ний ток	А	473,4	515,1	580,0		1#: 319.9 2#: 319.9		
Пусковой ток		А	1085,0	1085,0	1338,3		1#: 743.3 2#: 743.3		
	Расход воды	м³/ч	120,1	129,8	151,9	158,6	176,8		
Испаритель	Перепад давления по воде	кПа	28,4	28,3	28,6	1025 186,6 5,496 6,585 2 Inpeccop (Hanbell) e 310 1#: 161.1 2#: 161.1 1#: 297.1 2#: 297.1 1#: 663.3 2#: 663.3 158,6	45,4		
	Присоединительный размер	ММ	DN200	DN200	DN200		DN200		
	Расход воды	м ³ /ч	151,8	164,1	192,0	310 1#: 161.1 2#: 161.1 1#: 297.1 2#: 297.1 1#: 663.3 2#: 663.3 158.6 43.6 DN200 200,4 82,3 DN200 4360 1500 2323	223,3		
Конденсатор	Перепад давления по воде	кПа	1085,0 1085,0 1338,3 4 120,1 129,8 151,9 a 28,4 28,3 28,6 DN200 DN200 DN200 4 151,8 164,1 192,0 a 41,0 41,1 42,2 DN200 DN200 DN200	42,2	82,3	88,5			
	Присоединительный размер	ММ	DN200	DN200	DN200	310 1#: 161.1 2#: 161.1 1#: 297.1 2#: 297.1 1#: 663.3 2#: 663.3 158.6 43.6 DN200 200.4 82.3 DN200 4360 1500 2323 5137	DN200		
	Длина	ММ	2969	2969	3650	4360	4360		
Размеры	Ширина	ММ	1400	1400	1500	1500	1500		
	Высота	ММ	2132	2132	2279	2323	2323		
Масса транспортиро	вочная	ΚΓ	3545	3630	4456	5137	5386		
Масса эксплуатацио	нная	KF	3800	3902	4786	5493	5768		

ПРИМЕЧАНИЯ

- 1. Номинальная холодопроизводительность измерялась по стандарту AHRI 550/590:
- на стороне испарителя вода на входе 12,22 °C, вода на выходе 6,67 °C, коэффициент загрязнения 0,0176 м 2 -°C/кВт;
- на стороне конденсатора вода на входе 29,44 °C, вода на выходе 34,61 °C, коэффициент загрязнения 0,044 м 2 . °C/кВт.
- 2. В стандартном исполнении чиллеры имеют один холодильный контур (исполнение двух независимых контуров для чиллеров с двумя компрессорами доступно опционально).
- Рабочее давление на стороне воды для испарителя и конденсатора составляет 1,0 МПа (по запросу опционально доступно 1,6; 2,0 МПа).
 В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены.

	R134a	SCREW
MWSH	l_B	-FB3HF

Модель		MWSH_B-FB3HF	1470	1655	1825	2145		
	Производительность	кВт	1343	1519	1671	1964		
0	Потребляемая мощность	кВт	241,1	273,1	304,0	358,5		
Охлаждение	EER	-	5,572	5,561	5,496	5,479		
	IPLV	-	6,462	6,776	6,763	6,598		
	Количество	ШТ	2	2	2	2		
Компрессор	Тип	-	По	лугерметичный винтов	ой компрессор (Hanl	oell)		
Сомпрессор	Регулирование мощности	-	Бесступенчатое					
	Схема включения	-		Υ/	Δ			
V	Тип	-	R134a					
Хладагент	Заправка	КГ	350	370	390	500		
Электропитание		В, Ф, Гц		380, 3	3, 50			
Номинальный ток		А	1#: 208.1 2#: 208.1	1#: 235.8 2#: 235.8	1#: 262.4 2#: 262.4	1#: 309.5 2#: 309.5		
Максимальный рабо	чий ток	A	1#: 412.4 2#: 412.4	1#: 473.4 2#: 473.4	1#: 515.1 2#: 515.1	1#: 580.0 2#: 580.0		
Пусковой ток		А	1#: 875.0 2#: 875.0	1#: 1085.0 2#: 1085.0	1#: 1085.0 2#: 1085.0	1#: 1338.3 2#: 1338.3		
	Расход воды	м³/ч	207,7	234,9	258,4	303,8		
Испаритель	Перепад давления по воде	кПа	46,3	46,8	48,0	55,8		
	Присоединительный размер	ММ	DN200	DN200	DN200	DN250		
	Расход воды	м ³ /ч	261,9	296,2	326,5	384,0		
Конденсатор	Перепад давления по воде	кПа	89,9	90,9	90,7	102,0		
	Присоединительный размер	ММ	DN200	DN200	DN200	DN250		
	Длина	ММ	4360	5196	5196	5669		
Размеры	Ширина	ММ	1500	1600	1600	1800		
	Высота	ММ	2323	2403	2403	2513		
Масса транспортиро	вочная	КГ	5666	6737	6932	9086		
Масса эксплуатацио	нная	КГ	6104	7327	7565	9880		

ПРИМЕЧАНИЯ

- 1. Номинальная холодопроизводительность измерялась по стандарту АНRI 550/590:
- на стороне испарителя вода на входе 12,22 °C, вода на выходе 6,67 °C, коэффициент загрязнения 0,0176 м 2 . °C/кВт;
- на стороне конденсатора вода на входе 29,44 °C, вода на выходе 34,61 °C, коэффициент загрязнения 0,044 м². °C/кВт.
- 2. В стандартном исполнении чиллеры имеют один холодильный контур (исполнение двух независимых контуров для чиллеров с двумя компрессорами доступно опционально).
- опционально). 3. Рабочее давление на стороне воды для испарителя и конденсатора составляет 1,0 МПа (по запросу опционально доступно 1,6; 2,0 МПа).
- 4. В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены.

MWSH_B-FB3HF

Зоны обслуживания

Модель Размер, мм	s	*	z	Y
MWSH335-1050B-FB3HF	600	600	3200	1000
MWSH1100-2145B-FB3HF	600	600	4200	1000

Z: Зона для замены труб трубного пучка.

Опции

Наименование	Стандарт	Опционально
Электропитание	380 В, 3 фазы, 50 Гц	400/415 В, 3 фазы, 50 Гц; 380/440/460 В, 3 фазы 60 Гц
Тип соединения трубопроводов	Муфта Victaulic	Фланец
Рабочее давление воды	1.0 МПа	1.6 МПа, 2.0 МПа
Виброопоры	-	Пружинные виброопоры
Протокол связи	Modbus-RTU (RS485)	BACnet IP, BACnet MS/TP (RJ-45 port)
Температура воды на выходе конденсатора	55°C	до 65°C
Теплоизоляция	20 мм	40 мм
Реле протока на стороне испарителя	V	V
Выносная панель управления	X	V
Автоматическая система очистки трубного пучка	X	V

ПРИМЕЧАНИЕ

Возможность комплектации не указанными опциями требует отдельного уточнения.

Модельный ряд и производительность

Ежегодно компания Midea расширяет модельный ряд центробежных чиллеров нового поколения, обладающих высоким КПД и большой производительностью. Благодаря современной конструкции эффективность оборудования значительно увеличена.

Технология теплообменника со сплошной падающей пленкой использована для повышения эффективности и уменьшения объема заправки хладагента почти на 40% по сравнению с теплообменниками затопленного типа. Это инновационное решение способствует сохранению окружающей среды и эффективно сокращает выбросы CO₂.

Чтобы удовлетворить различные требования заказчика и повысить рентабельность капиталовложений, Midea выпускает оборудование различных классов эффективности, включая инверторные модели.

Модельный ряд

Высокоэффективный чиллер

MWT2C_B-FB3H MWT2C_B-FB10H (380 B / 10 kB)

Инверторный чиллер

MWVC_B-FB3H (380 B)

Сверхвысокоэффективный чиллер

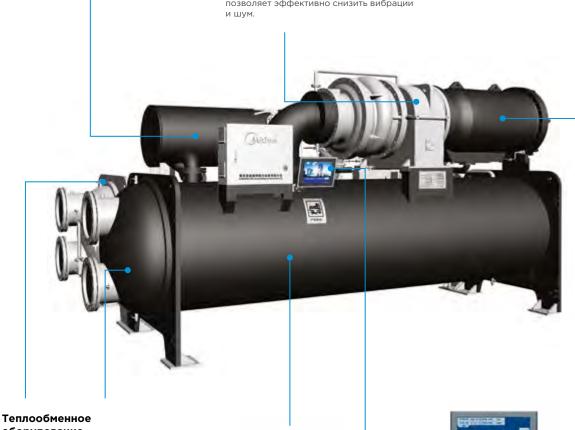
MWT2C_B_FB3Y (380B) MWT2C_B-FB10Y(10 κB)

T	Инверторный чиллер	Высокоэффек	тивный чиллер	Сверхвысокоэф-	Сверхвысокоэф-
Тип чиллера	(380 B)	(380 B)	(10 kB)	фективный чиллер (380 B)	фективный чиллер (10 кВ)
Модель	MWVC_B-FB3H	MWT2C_B-FB3H	MWT2C_B-FB10H	MWT2C_B_FB3Y	MWT2C_B-FB10Y
Холодильный коэффициент, EER	6,22 - 6,40/ 6,36 - 6,58	6,08 - 6,15	6,1 - 6,19	6,21 - 6,31	6,33 - 6,60
Холодопроизводительность, кВт	879 - 1934/ 2210 - 4571	2110 - 4571	4922 - 7735	2110 - 4571	4922 - 7735
Рекомендованные параметры питания	380 В, 3 фазы, 50 Гц	380 В, 3 фазы, 50 Гц	10 000 В, 3 фазы, 50 Гц	380 В, 3 фазы, 50 Гц	10 000 В, 3 фазы, 50 Гц

Высокоэффективный и сверхвысокоэффективный центробежный чиллер

Экономайзер в двухступенчатом компрессоре

Экономайзер уникальной конструкции Midea повышает эффективность на 5-8% по сравнению с одноступенчатыми


Полугерметичный центробежный компрессор

Этот компрессор разработан Midea на современной платформе, рабочее колесо и диффузор согласованы друг с другом. Компактный компрессор имеет меньше движущихся деталей. Использование двухступенчатого сжатия позволяет эффективно снизить вибрации

Электродвигатель с охлаждением парами хладагента

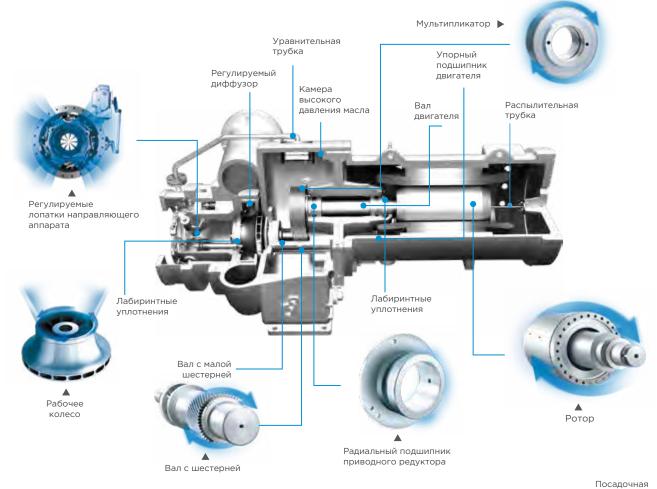
Электродвигатель охлаждается хладагентом, это обеспечивает эффективность в различных условиях работы и длительный срок службы. Использован высокоэффективный электродвигатель с увеличенным до 97% коэффициентом полезного действия.

оборудование

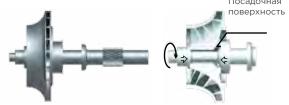
Кожухотрубный конденсатор со встроенным переохладителем обеспечивает высокую эффективность и простоту обслуживания. Испаритель со сплошной падающей пленкой существенно снижает количество холодильного агента в чиллере.

Экологически чистое охлаждение

Хладагент R134a — экологически чистый газ с нулевым потенциалом озонного истощения (ODP)


Современная система управления

Система управляется промышленным PLC, обладающим большим количеством функций (поставляется в комплекте). Используется открытый интерфейс RS485, совместимый с системой управления зданием (BMS), и удобный цветной сенсорный экран с диагональю 10 дюймов.


Полугерметичный центробежный компрессор

Бесшпоночная муфта крыльчатки с высокоскоростным валом (патент № ZL 01 2 56824. 4)

Для предотвращения напряжений на валу рабочее колесо соединено с валом без использования шпонок. Высокоскоростной вал обеспечивает стабильную работу и долгий срок службы.

Регулируемые лопатки входного направляющего аппарата (IGV) согласованы с подвижным диффузором (патент № ZLO1 2 56825. 2)

Обеспечивается стабильная работа компрессора при малой частичной нагрузке без пульсаций и помпажа. Производительность регулируется в диапазоне от 10 до 100%.

Технология теплообмена со сплошной падающей пленкой (патент № 20121041053. 9 201220552298)

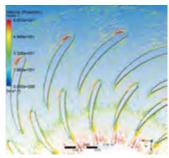
Уникальная технология обеспечивает образование тонкой пленки хладагента на поверхности труб и последующее ее испарение. Применение этой технологии увеличивает скорость теплообмена на 3-8 % и позволяет уменьшить на 40 % объем заправки хладагента.

Ключевые технологии

Оптимизация проточной газовой части компрессора способствует дальнейшему повышению эффективности

Трехмерное рабочее колесо, соединенное с оптимизированной спиральной улиткой, обеспечивает необходимую скорость потока и максимальную эффективность.

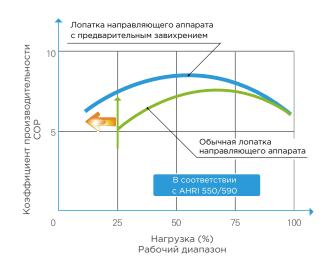
 В центробежных компрессорах Midea используется компактный диффузор.



Диффузор

Высокоэффективное рабочее колесо

 Высокоточное рабочее колесо из легированного сплава, изготовленное на немецком 5-координатном обрабатывающем станке GMD. Толщина рабочего колеса уменьшена на 30%, что сокращает потери в осевом направлении и контактные потери. Форма направляющего аппарата обеспечивает минимальные потери давления.


Лопатка, уменьшающая турбулентность

 Конструкция со сбалансированными аэродинамическими потерями уменьшает шум и вибрацию.

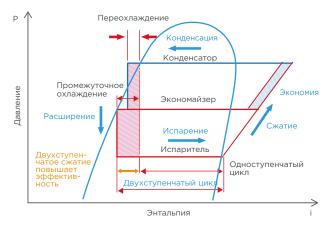
Технология лопаток направляющего аппарата с предварительным закручиванием потока

Компрессор оснащен лопатками направляющего аппарата с предварительным завихрением, которые создают поток при различных условиях нагрузки, тем самым расширяя рабочий диапазон и повышая эффективность.

Ключевые технологии

R134a CENTRIFUGAL

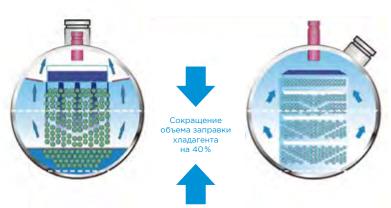
MWT2C_B


Технология двухступенчатого сжатия

- Конструкция с двухступенчатым сжатием повышает удельную холодопроизводительность хладагента и снижает потребляемую мощность, это повышает эффективность на 6% по сравнению с одноступенчатым компрессором.
- Уникальный экономайзер с трехступенчатым разделением повышает эффективность.

Схема технологии двухступенчатого сжатия

Конструкция рабочих колес обеспечивает одинаковую степень сжатия, это способствует снижению скорости вращения и повышает надежность.


Современная технология теплообмена

Уникальная технология испарения со сплошной падающей пленкой: распыление обеспечивает образование пленки жидкого хладагента и его испарение с поверхности труб испарителя, что значительно повышает эффективность теплообмена и позволяет на 40% сократить заправку хладагента. Компания Міdea использует запатентованную технологию для обеспечения равномерного распределения хладагента, что максимально увеличивает теплообменную способность и повышает эффективность всей системы.

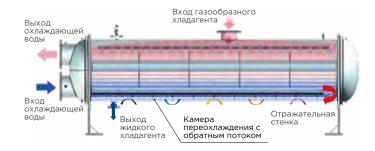
Испаритель затопленного типа

Технология со сплошной падающей пленкой позволяет на 40% сократить объем заправки хладагента по сравнению с испарителем затопленного типа.

Смешанная падающая пленка

Технология со смешанной падающей пленкой позволяет на 25% сократить объем заправки хлад-агента по сравнению с испарителем затопленного типа.

Сплошная падающая пленка


Процентное содержание жидкости стремится к нулю

Ключевые технологии

Конденсатор

Высокоэффективный теплообменник повышает коэффициент теплопередачи. Конструкция камеры предварительного охлаждения с обратным потоком увеличивает степень переохлаждения и повышает эффективность.

Логика управления

Микропроцессорная система управления оснащена функциями самодиагностики, саморегулировки и защиты. Она способна прогнозировать реальные изменения нагрузки в соответствии с целевыми значениями и прошлыми уровнями нагрузки, заблаговременно изменяя рабочую нагрузку и предотвращая непроизводительный перерасход энертии.

Температура конденсации

Температура конденсации ниже предельной температуры кипения / на всасывающем патрубке

Чиллеры с высокой эффективностью (380 В)

Модель		MWT2C_B-FB3H	2100	2300	2500	3600	3800	3000
Холодопроизводительность		кВт	2110,0	2285,0	2461,0	2637,0	2813,0	2989,0
Потребляемая мош	цность	кВт	343,6	372,0	401,7	430,0	458,7	486,3
EER (холодильный	коэффициент)		6,14	6,14	6,13	6,13	6,13	6,15
IPLV			6,71	6,74	6,81	7,15	7,09	7,29
Номинальная мощность двигателя		кВт	490,0	490,0	490,0	490,0	560,0	560,0
Номинальный ток		А	596,6	645,9	697,6	746,7	796,4	844,5
Макс. рабочий ток		А	673,9	724,6	784,1	839,1	891,1	953,6
Ток при заторможе	енном роторе	А	4700	4700	4700	4700	5400	5400
	Расход воды	м³/ч	325,9	353,1	380,3	407,4	434,6	461,7
Іспаритель	Перепад давления	кПа	39,1	44,7	54,0	55,8	55,9	57,6
	Патрубок для подачи воды	MM	DN250	DN250	DN300	DN300	DN300	DN300
	Расход воды	м³/ч	405,4	439,2	473,2	507,0	541,0	574,7
Конденсатор	Перепад давления	кПа	55,4	64,1	66,2	65,4	64,9	66,3
	Патрубок для подачи воды	MM	DN250	DN250	DN300	DN300	DN300	DN300
	Длина	ММ	4690	4690	4690	4690	4690	4690
Габариты блока	Ширина	ММ	1800	1800	1950	1950	1950	1950
•	Высота	ММ	2410	2410	2410	2410	2410	2410
Масса транспортир	овочная	КГ	10240	10240	11140	11270	11355	11425
Масса эксплуатаци	онная	КГ	12180	12180	13159	13350	13564	13712

Модель		MWT2C_B-FB3H	3200	3300	3500	3900	4200	4600
Холодопроизводительность		кВт	3164,0	3340,0	3516,0	3868,0	4219,0	4571,0
Потребляемая моц	цность	кВт	512,3	542,8	570,7	624,4	678,4	731,3
EER (холодильный	коэффициент)		6,18	6,15	6,16	6,19	6,22	6,25
IPLV			7,27	6,98	6,95	6,81	7,01	7,12
Номинальная мощ	ность двигателя	кВт	630,0	630,0	630,0	695,0	760,0	840,0
Номинальный ток		А	889,5	942,5	990,9	1084	1178	1270
Макс. рабочий ток	:	А	993,9	1048,5	1103	1207	1313	1411
Ток при затормож	енном роторе	А	6100	6100	6100	6800	7400	9200
	Расход воды	м³/ч	488,9	516,1	543,2	597,5	651,9	706,2
Испаритель	Перепад давления	кПа	59,7	58,1	60,0	59,1	58,4	67,7
	Патрубок для подачи воды	MM	DN300	DN300	DN300	DN300	DN300	DN300
	Расход воды	м³/ч	608,4	642,5	676,3	743,5	810,8	877,5
Конденсатор	Перепад давления	кПа	66,2	64,0	68,7	64,3	58,5	64,9
	Патрубок для подачи воды	ММ	DN300	DN300	DN300	DN300	DN300	DN300
	Длина	ММ	4690	4745	4745	4745	4745	4745
Габариты блока	Ширина	ММ	1950	2260	2260	2260	2260	2260
	Высота	ММ	2410	2610	2610	2610	2610	2610
Масса транспорти	ровочная	КГ	11494	11920	12067	12235	12380	12480
Масса эксплуатаці	лонная	KF	13839	14532	14773	15108	15376	15500

- Производительность и эффективность определены по стандартам AHRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°C, коэффициент загрязнения 0,0176 м².°C/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44/34,61°C, коэффициент загрязнения 0,0440 м².°C/кВт.

 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление — по
- специальному требованию (опция). 3. Информация на фактическом изделии имеет преимущественную силу.
- 4. В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским параметрам.

Чиллеры с высокой эффективностью (10 кВ)

Модель		MWT2C_B-FB10H	4900	5300	5600	6000	6300
Холодопроизводит	ельность	кВт	4922,0	5274,0	5626,0	5977,0	6329,0
Потребляемая мош	, , , , ,	кВт	793,4	848,5	909,4	965,4	1013
EER (холодильный	коэффициент)		6,21	6,22	6,19	6,19	6,25
IPLV			6,62	6,46	6,66	6,60	6,77
Номинальная мощность двигателя		кВт	930,0	990,0	1100	1100	1200
Номинальный ток		А	52,60	56,30	60,30	64,10	67,20
Макс. рабочий ток		A	58,91	62,79	67,52	71,82	74,87
Ток при заторможе	енном роторе	A	380,0	405,0	450,0	450,0	490,0
	Расход воды	м³/ч	760,5	814,8	869,1	923,5	977,8
Испаритель	Перепад давления	A 380,0 405,0	59,3	66,8	70,8		
	Патрубок для подачи воды	MM	DN400	DN400	DN400	DN400	DN400
	Расход воды	м³/ч	946,5	1014	1082	965,4 6,19 6,60 1100 64,10 71,82 450,0 923,5 66,8	1217
Конденсатор	Перепад давления	кПа	68,0	66,9	64,9	73,2	70,8
	Патрубок для подачи воды	ММ	DN400	DN400	DN400	DN400	DN400
	Длина	ММ	5190	5190	5190	5190	5290
Габариты блока	Ширина	ММ	2700	2700	2700	2700	3150
	Высота	ММ	3010	3010	3010	3010	3180
Масса транспортир	оовочная	КГ	19370	20150	20850	20879	23360
Масса эксплуатаци	онная	KF	22840	23490	24210	24289	27040

Модель		MWT2C_B-FB10H	6700	7000	7400	7700
Холодопроизводит	гельность	кВт	6680,0	7032,0	7384,0	7735,0
Потребляемая моц	цность	кВт	1070	1131	1180	1251
EER (холодильный	коэффициент)		6,24	6,22	6,26	6,18
IPLV			6,74	6,68	6,78	6,70
Номинальная мощі	ность двигателя	кВт	1200	1320	1320	1450
Номинальный ток		А	71,00	75,10	78,30	83,00
Макс. рабочий ток		А	80,12	84,21	88,31	93,45
Ток при затормож	енном роторе	А	490,0	540,0	540,0	590,0
	Расход воды	м ³ /ч	1032	1086	1141	1195
Испаритель	Перепад давления	кПа	66,0	67,5	67,0	67,1
	Патрубок для подачи воды	ММ	DN400	DN400	DN400	DN400
	Расход воды	м ³ /ч	1284	1353	1419	1489
Конденсатор	Перепад давления	кПа	67,6	66,6	66,5	67,0
	Патрубок для подачи воды	MM	DN400	DN400	DN400	6,18 6,70 1450 83,00 93,45 590,0 1195 67,1 DN400
	Длина	ММ	5290	5290	5290	5290
Габариты блока	Ширина	MM	3150	3150	3150	3150
	Высота	MM	3180	3180	3180	3180
Масса транспортиј	ровочная	KF	23590	23870	24120	24350
Масса эксплуатаци	лонная	KF	27490	27840	28076	28310

ПРИМЕЧАНИЕ

- Производительность и эффективность определены по стандартам АНRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°С, коэффициент загрязнения 0,0176 м².°С/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44/34,61°С, коэффициент загрязнения 0,0440 м².°С/кВт.
- 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление по
- специальному требованию (опция). 3. Информация на фактическом изделии имеет преимущественную силу.
- 4. В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским параметрам.

R134a CENTRIFUGAL MWT2C_B

Сверхвысокоэффективные чиллеры (380 В)

Модель		MWT2C_B-FB10Y	2100	2300	2500	2600	2800	3000
Холодопроизводит	ельность	кВт	2110,0	2285,0	2461,0	2637,0	2813,0	2989,0
Потребляемая моц	, НОСТЬ	кВт	336,0	363,4	392,6	418,6	443,9	470,9
EER (холодильный	коэффициент)		6,28	6,29	6,27	6,30	6,34	6,35
IPLV			6,89	6,92	6,95	7,23	7,25	7,29
Номинальная мощность двигателя		кВт	490,0	490,0	490,0	490,0	560,0	560,0
Номинальный ток		A	583,4	631,1	681,7	726,8	770,8	817,7
Макс. рабочий ток		A	656,9	706,8	764,1	816,0	862,2	922,0
Ток при заторможе	енном роторе	A	4700	4700	4700	4700	5400	5400
	Расход воды	м³/ч	325,9	353,1	380,3	407,4	434,6	461,7
1спаритель	Перепад давления	кПа	73,0	76,8	46,7	49,0	48,9	51,2
	Патрубок для подачи воды	MM	DN250	DN250	DN300	DN300	DN300	DN 300
	Расход воды	м³/ч	404,2	437,9	471,8	505,2	538,8	572,3
Конденсатор	Перепад давления	кПа	69,6	70,5	59,0	59,1	58,6	55,7
	Патрубок для подачи воды	MM	DN250	DN250	DN300	DN300	DN300	DN 300
	Длина	MM	5020	5020	5020	5020	5020	5020
Габариты блока	Ширина	MM	1800	1800	2100	2100	2100	2100
	Высота	MM	2410	2410	2510	2510	2510	2510
Масса транспортир	овочная	КГ	10700	10820	12260	12460	12580	12720
Масса эксплуатаци	онная	KF	12640	12760	14479	14740	14989	15207

Модель		MWT2C_B-FB10Y	2100	2300	2500	2600	2800	3000
Холодопроизводит	гельность	кВт	3164,0	3340,0	3516,0	3868,0	4219,0	4571,0
Потребляемая моц	цность	кВт	501,0	522,8	552,0	608,3	661,1	715,1
EER (холодильный коэффициент)			6,32	6,39	6,37	6,36	6,38	6,39
IPLV			7,36	7,15	7,16	7,11	7,18	7,18
Номинальная мощность двигателя		кВт	630,0	630,0	630,0	695,0	760,0	840,0
Номинальный ток		A	870,0	907,9	958,5	1056	1148	1242
Макс. рабочий ток		A	971,8	1010,4	1068	1176	1280	1381
Ток при заторможенном роторе		A	6100	6100	6100	6800	7400	9200
	Расход воды	M ³ /4	488,9	516,1	543,2	597,5	651,9	706,2
Испаритель	Перепад давления	кПа	52,6	50,4	52,1	52,3	52,1	60,1
	Патрубок для подачи воды	MM	DN300	DN300	DN300	DN300	DN300	DN300
	Расход воды	M ³ /4	606,7	639,5	673,4	741,1	808,1	875,0
Конденсатор	Перепад давления	кПа	61,9	57,4	61,5	57,3	55,0	63,5
	Патрубок для подачи воды	MM	DN300	DN300	DN300	DN300	DN300	DN300
Габариты блока	Длина	MM	5020	5045	5045	5045	5045	5045
	Ширина	MM	2100	2260	2260	2260	2260	2260
	Высота	MM	2510	2610	2610	2610	2610	2610
Масса транспортировочная		КГ	12850	13560	13730	13950	14250	14250
Масса эксплуатационная		KF	15395	16372	16636	17023	17446	17446

ПРИМЕЧАНИЕ

- Производительность и эффективность определены по стандартам АНRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°С, коэффициент загрязнения 0,0176 м².°С/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44/34,61°С, коэффициент загрязнения 0,0440 м².°С/кВт.
- 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление по специальному требованию (опция).
- Информация на фактическом изделии имеет преимущественную силу.
 В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским

Сверхвысокоэффективные чиллеры (10 кВ)

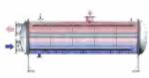
Модель		MWT2C_B-FB10Y	4900	5300	5600	6000	6300
Холодопроизводительность		кВт	4922,0	5274,0	5626,0	5977,0	6329,0
Потребляемая мощность		кВт	772,8	827,9	878,7	905,7	956,3
EER (холодильный коэффициент)			6,37	6,37	6,40	6,60	6,62
IPLV			6,88	6,89	6,90	7,08	7,21
Номинальная мощность двигателя		кВт	930,0	990,0	1100	1100	1200
Номинальный ток		А	51,30	54,90	58,30	60,10	63,50
Макс, рабочий ток		А	57,33	61,22	65,00	67,20	70,56
Ток при заторможенном роторе		A	380,0	405,0	450,0	450,0	490,0
Испаритель	Расход воды	м³/ч	760,5	814,8	869,1	923,5	977,8
	Перепад давления	кПа	59,8	56,8	55,4	60,3	62,9
	Патрубок для подачи воды	ММ	DN400	DN400	DN400	DN400	DN400
Конденсатор	Расход воды	м³/ч	943,3	1011	1078	1141	1208
	Перепад давления	кПа	59,9	65,1	62,2	71,9	68,2
	Патрубок для подачи воды	MM	DN400	DN400	DN400	DN400	DN400
Габариты блока	Длина	ММ	5690	5690	5690	5690	5790
	Ширина	ММ	2800	2800	2800	2800	3150
	Высота	ММ	3010	3010	3010	3010	3180
Масса транспортировочная		КГ	22324	22515	24030	24817	25312
Масса эксплуатационная		КГ	25944	26055	27640	28727	28992

Модель		MWT2C_B-FB10Y	6700	7000	7400	7700
Холодопроизводительность		кВт	6680,0	7032,0	7384,0	7735,0
Потребляемая мощность		кВт	1002	1073	1133	1205
EER (холодильный коэффициент)			6,67	6,56	6,52	6,42
IPLV			7,27	7,22	7,22	7,00
Номинальная мощность двигателя		кВт	1200	1320	1320	1450
Номинальный ток		А	66,50	71,20	75,20	80,00
Макс, рабочий ток		А	74,66	79,49	84,21	89,57
Ток при заторможенном роторе		А	490,0	540,0	540,0	590,0
Испаритель	Расход воды	м ³ /ч	1032	1086	1141	1195
	Перепад давления	кПа	59,4	60,3	60,3	61,3
	Патрубок для подачи воды	MM	DN400	DN400	DN400	DN400
Конденсатор	Расход воды	м ³ /ч	1274	1344	1412	1482
	Перепад давления	кПа	65,8	58,8	59,4	64,9
	Патрубок для подачи воды	MM	DN400	DN400	DN400	DN400
Габариты блока	Длина	ММ	5790	5790	5790	5790
	Ширина	ММ	3150	3150	3150	3150
	Высота	ММ	3180	3180	3180	3180
Масса транспортировочная		КГ	25543	25949	26250	26314
Масса эксплуатационная		КГ	29443	30019	30306	30374

- Производительность и эффективность определены по стандартам АНRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°C, коэффициент загрязнения 0,0176 м².°С/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44/34,61°C, коэффициент загрязнения 0,0440 м².°С/кВт.
- 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление по специальному требованию (опция).
- Информация на фактическом изделии имеет преимущественную силу.
 В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским

Сверхвысокоэффективный центробежный инверторный чиллер

Достоинства конструкции


Экологически безопасный хладагент

Инверторный электродвигатель компрессора

Цветной сенсорный дисплей

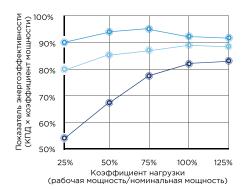
Конденсатор со встроенным переохладителем

R134a CENTRIFUGAL

Передовой компрессор

 Горизонтальный центробежный одноосный компрессор с симметричными рабочими колесами встречного расположения.

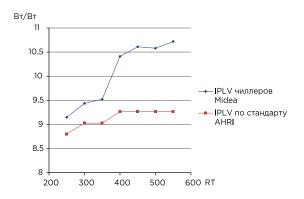
Конструктивное решение центробежного инверторного чиллера с прямым приводом и испарителем со сплошной падающей пленкой защищено целым рядом патентов. В конструкции компрессора используется 7 запатентованных технических решений:


- симметричные крыльчатки встречного расположения (для горизонтального центробежного одноосного компрессора);
- 2) способ соединения и крепления рабочего колеса;
- 3) механизм регулировки направляющего аппарата с роликом;
- 4) объединение упорного диска и оси вращения;
- 5) электродвигатель компрессора с блоком выводов;
- 6) алгоритм корректировки положения лопаток направляющего аппарата центробежного чиллера;
- устройство регулировки подачи газа и центробежный компрессор с этим устройством.

Высокоэффективный инверторный электродвигатель

 КПД электродвигателя 95,5%, показатель энергоэффективности (КПД × коэффициент мощности) на два с лишним процента выше, чем у инверторного асинхронного электродвигателя.

Высокая удельная мощность при небольших размерах — в 5 раз меньше асинхронного электродвигателя.


Позволяет работать с большой частотой вращения, пределы регулировки частоты вращения 120-300 Гц.

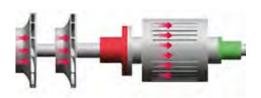
- Инверторный электродвигатель Midea
- Инверторный асинхронный электродвигатель
- Электродвигатель с фиксированной частотой вращения

Высокая эффективность

 Эффективность определена по стандартам ASHRAE-90.1-2013 и AHRI 550/590-2011. Из приведенных ниже зависимостей видно, что эффективность центробежных чиллеров Midea с прямым приводом выше определяемой стандартами.

Симметричные рабочие колеса Midea, встречно расположенные на горизонтальной оси

 Впервые разработанный и запатентованный компанией Midea горизонтальный компрессор с симметричными рабочими колесами встречного расположения и перепускным трубопроводом.


Равные встречные усилия на рабочие колеса увеличивают срок службы, сокращают утечки через уплотнения, а отсутствие потерь в трансмиссии повышает эффективность.

Рабочие колеса традиционного типа

■ Традиционно рабочие колеса двухступенчатых компрессоров устанавливаются последовательно в одном направлении, и осевые силы, действующие на оба колеса, складываются.

Повышенная нагрузка на упорный подшипник вызывает механические повреждения, поэтому требуются подшипники с повышенной надежностью.

R134a CENTRIFUGAL

Инверторный чиллер

Модель	MWV	C_A-FB3H	900	1000	1200	1400	1600	1800	1900
Холодопроизводит	тельность	кВт	879,1	1055	1231	1407	1582	1758	1934
	Потребляемая мощность	кВт	141,2	165,2	193,0	224,2	247,3	276,1	309,5
Эффективность	Коэффициент производительности EER		6,22	6,38	6,38	6,27	6,40	6,37	6,25
	Номинальная мощность двигателя	кВт	200	200	240	280	315	315	350
Компрессор	Параметры электропитания	В, Ф, Гц				380, 3, 50/60			
	Схема запуска	Схема запуска			Инверто	орный прямой	привод		
	Охлаждение электродвигателя	1				Хладагентом			
Испаритель	Производительность по охлажденной воде	м³/ч	136	163	191	218	245	272	299
	Перепад давления охлаждаемой воды	кПа	49,10	48,57	49,03	49,57	50,18	49,96	49,60
испаритель	Число проходов			***************************************		2		***************************************	
	Вид соединения	/				Фланцевое			
	Патрубок для подачи воды	ММ	DN200	DN200	DN200	DN250	DN250	DN250	DN250
	Расход охлаждающей воды	м³/ч	171	205	239	273	308	342	376
	Перепад давления охлаждающей воды	кПа	45,80	47,25	47,54	46,50	47,98	50,63	51,47
Конденсатор	Число проходов			*		2			*
	Вид соединения	/				Фланцевое			
	Патрубок для подачи воды	мм	DN200	DN200	DN200	DN250	DN250	DN250	DN250
Масса транспортиј	ровочная	кг	4650	4800	4950	5650	5800	5950	6100
Масса эксплуатаци	ионная	KF	5550	5750	5950	6700	6900	7100	7300
	Длина агрегата	ММ	3650	3650	3650	3650	3650	3650	3650
	Ширина агрегата	ММ	1940	1940	1940	2000	2000	2000	2000
Dagwanu	Высота агрегата	ММ	2150	2150	2150	2150	2150	2150	2150
Размеры	Длина в упаковке	ММ	3650	3650	3650	3650	3650	3650	3650
	Ширина в упаковке	ММ	1940	1940	1940	2000	2000	2000	2000
	Высота в упаковке	мм	2350	2350	2350	2350	2350	2350	2350

Производительность и эффективность определены по стандартам АНRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°C, коэффициент загрязнения 0,0176 м²°C/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44 /34,61°C,

коэффициент загрязнения 0,0440 м².°С/кВт. 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление — по специальному требованию (опция).

3. Информация на фактическом изделии имеет преимущественную силу.

^{4.} В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским параметрам изделия.

MWVC

Инверторный чиллер

Модель		MWVC_B-FB3H	2100	2285	2460	2650	2815	3000
Холодопроизводит	ельность	кВт	2110,0	2285,0	2461,0	2637,0	2813,0	2989,0
Потребляемая мош	, НОСТЬ	кВт	331,3	357,2	378,0	407,5	442,1	460,7
EER (холодильный коэффициент)			6,37	6,40	6,51	6,47	6,36	6,49
IPLV			9,31	9,63	9,99	10,16	10,19	10,15
Номинальная мощн		кВт	400	400	450	450	500	560
Номинальный ток		А	541,3	583,6	617,6	665,7	722,3	752,6
Макс. рабочий ток		А	613,1	658,9	696,0	745,8	801,6	850,4
Ток при заторможенном роторе		А	3281	3281	3905	3905	4864	6495
Испаритель	Расход воды	м³/ч	325,9	353,1	380,3	407,4	434,6	461,7
	Перепад давления	кПа	53,8	52,2	58,6	56,1	60,1	56,2
	Патрубок для подачи воды	ММ	DN300	DN300	DN300	DN300	DN300	DN300
	Расход воды	м³/ч	404,3	437,9	470,6	504,7	539,7	572,2
Конденсатор	Перепад давления	кПа	51,4	54,5	51,0	55,1	54,7	55,2
	Патрубок для подачи воды	MM	DN300	DN300	DN300	DN300	DN300	DN300
	Длина	MM	4700	4700	4700	4700	4700	4750
Габариты блока	Ширина	ММ	1950	1950	1950	1950	1950	2150
	Высота	ММ	2750	2750	2750	2750	2750	2900
Масса транспортир	овочная	КГ	9060	9120	9330	9410	9490	10665
Масса эксплуатаци	онная	КГ	10700	10790	11080	11210	11330	12885

1 одель		MWVC_B-FB3H	3165	3340	3520	3870	4220	4570
олодопроизводит	ельность	кВт	3164,0	3340,0	3516,0	3868,0	4219,0	4571,0
Потребляемая мощность		кВт	482,2	513,3	538,8	591,8	641,7	698,0
EER (холодильный коэффициент)			6,56	6,51	6,52	6,53	6,57	6,55
PLV			10,37	10,39	10,55	10,35	10,57	10,69
Іоминальная мощн	ность двигателя	кВт	560	560	630	700	700	800
Іоминальный ток		А	787,7	838,6	880,3	966,9	1048	1140
Макс. рабочий ток		А	888,6	945,5	991,7	1089	1181	1282
Ток при заторможенном роторе		А	6495	6495	6246	6638	6638	6955
	Расход воды	м ³ /ч	488,9	516,1	543,2	597,5	651,9	706,2
Іспаритель	Перепад давления	кПа	62,4	54,5	58,4	57,0	57,0	56,0
	Патрубок для подачи воды	ММ	DN300	DN300	DN300	DN300	DN300	DN300
	Расход воды	м ³ /ч	605,2	639,8	673,3	740,7	807,5	875,1
онденсатор	Перепад давления	кПа	58,9	53,4	55,6	52,6	53,4	58,0
	Патрубок для подачи воды	ММ	DN300	DN300	DN300	DN300	DN300	DN300
	Длина	MM	4750	4750	4750	4800	4800	4800
абариты блока	Ширина	ММ	2150	2150	2150	2260	2260	2260
	Высота	ММ	2900	2900	2900	3050	3050	3050
1асса транспортир	оовочная	КГ	10690	11050	11050	13320	13520	13650
Масса эксплуатационная		ΚΓ	12915	13450	13450	16180	16495	16710

ПРИМЕЧАНИЯ

- Производительность и эффективность определены по стандартам АНRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°C, коэффициент загрязнения 0,0176 м².°С/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44 /34,61°C, коэффициент загрязнения 0,0440 м².°С/кВт.
- 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление по
- За Информация на фактическом изделии имеет преимущественную силу.
 В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским параметрам изделия.

Интеллектуальная система управления MIC — Midea Intelligent Control

Удобный интерфейс

Система управления имеет порт для связи по промышленной сети Modbus-RTU или по другим сетевым протоколам, обеспечивающим функции дистанционного управления, мониторинга и диагностики. Она позволяет в режиме реального времени отображать различную информацию и данные самодиагностики всей системы. Также есть программы (например, предварительного оповещения о неисправности, защиты, управления блокировками и т. п.), предназначенные для правильного выполнения пуска и остановки системы, обеспечения нормальной эксплуатации и энергосбережения в промежутках между циклами нагрузки.

Контроллер чиллера монтируется на заводе вместе с электропроводкой и для проверки исправности тестируется непосредственно перед отгрузкой.

Экранный интерфейс

- Графический дисплей.
- Сенсорный экран.
- Данные о рабочем состоянии.
- Рабочие параметры.
- Отображение и сохранение в памяти предаварийного/аварийного сообщения.
- Функция запроса статистических данных и кривых тенденций.

Управление

- Настройка пользователем температуры воды на выходе.
- Автоматическое повышение/ понижение нагрузки в соответствии с температурой охлаждаемой воды.
- Функция паузы сокращает эксплуатационные расходы.
- Независимый запуск и останов чиллеров.

Критерии обеспечения безопасности

- Слишком низкий перепад давления масла.
- Слишком низкая/высокая температура масла.
- Слишком большой ток электродвигателя компрессора.
- Слишком маленький ток электродвигателя компрессора.
- Слишком низкое давление парообразования (испаритель).
- Слишком высокое давление конденсации (конденсатор).
- Перегрузка масляного насоса.
- Неисправность пускателя.
- Слишком большое время запуска.
- В конденсаторе или испарителе недостаточно воды.
- Защита от замерзания.

Управление блокировками

- Предварительная/последующая смазка масляного насоса.
- Предварительное/последующее включение водяного насоса.
- Управление блокировками пускового устройства.
- Режимы Pause/Stop [Пауза/Стоп] блокировки направляющего аппарата.
- Проверка безопасности перед пуском.
- Управление блокировками при предварительном оповещении.

Стандартные виды защиты

Защита от низкого давления подачи масла

По давлению масла судят о расходе масла и о работе масляного насоса. Существенное понижение давления свидетельствует об отказе масляного насоса, течи масла или засорении контура смазки значение перепада давления в режиме предварительной смазки компрессора не должно падать ниже заданной величины. Несоответствие этому требованию ведет к запрету на пуск чиллера. Если перепад давления падает ниже заданного значения во время работы компрессора, система защиты сигнализирует об аварии. Если эта величина опускается ниже минимального заданного значения, чиллер выключается.

Защита по температуре масла

Высокая температура масла при работающем масляном насосе и (или) компрессоре может указывать на неисправность маслоохладителя, перегрев масла и подшипников или засорение масляного фильтра. Если температура масла увеличивается до заданного максимально допустимого значения, чиллер выключается. Если температура масла в картере ниже заданного значения, пуск компрессора невозможен. Интерфейс пользователя отображает диагностическое сообщение.

Защита масляного насоса от перегрузки по току

Панель управления масляным насосом контролирует ток масляного насоса и отключает чиллер, если ток превышает максимальное заданное значение.

Защита от превышения давления в конденсаторе

Алгоритм работы контроллера чиллера обеспечивает поддержание давления в конденсаторе ниже заданного максимального значения. Чиллер способен работать в надежном и безопасном режиме, пока давление не достигнет этого заданного значения. Если давление в конденсаторе превышает заданное значение, система запрещает открытие входного направляющего аппарата, чтобы уменьшить давление, или немедленно выключает чиллер.

Защита от низкого давления в испарителе

Алгоритм работы контроллера чиллера обеспечивает поддержание давления в испарителе выше заданного минимального значения. Чиллер способен работать в надежном и безопасном режиме, пока давление не опустится до этого заданного значения.

Если давление в испарителе опускается ниже заданного значения, система запрещает открытие входного направляющего аппарата, чтобы увеличить давление, или немедленно выключает чиллер.

Защита по расходу воды

В систему водяных трубопроводов должны быть установлены реле протока. Контроллер чиллера оснащен цифровым входом, указывающим расход воды. Если в течение фиксированного времени в процессе запуска этот вход не подтверждает наличие потока, процесс запуска прерывается. Если поток воды прекращается во время работы чиллера, система выключает чиллер с целью его защиты от возможного повреждения.

Защита от низкой температуры хладоносителя на выходе

Защита от низкой температуры охлажденной воды на выходе, также называемая защитой от замерзания, предотвращает замерзание воды в испарителе, немедленно останавливая работу чиллера, если температура на выходе достигает минимально допустимого значения. Когда температура воды на входе достигает заданного значения для повторного запуска, чиллер автоматически включается. Срабатывание этой защиты может быть вызвано неисправностью датчика, неправильно выбранным заданным значением температуры на выходе охлажденной воды или отсутствием потока охлажденной воды.

Защита от перегрузки по току

Панель управления контролирует ток на каждой фазе электродвигателя. Если наибольшая сила тока в одной из трех фаз превышает 110% номинального значения, система автоматически закрывает входной направляющий аппарат и проверяет, уменьшится ли ток до номинального значения. Система выключает чиллер, если наибольшая сила тока в одной из трех фаз превышает 115% номинального значения. Защита от перегрузки по току не препятствует работе чиллера с полной нагрузкой.

Защита от перегрева обмоток электродвигателя

Функция контролирует температуру электродвигателя и выключает чиллер при превышении температурой заданного значения. Контроллер постоянно отслеживает показания датчиков температуры обмоток, когда на него подано питание. Он незамедлительно выключает чиллер, если температура превышает максимальное заланное значение

Защита от превышения времени запуска

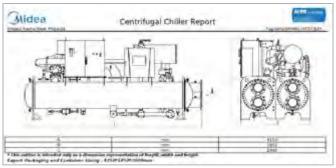
Если при запуске чиллера время переключения со схемы «звезда» на схему «треугольник» превышает заданное значение, система незамедлительно выключает чиллер с целью защиты его от возможного повреждения.

Защита электропитания

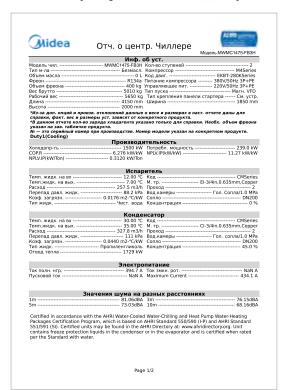
Изготовителем установлен трансформатор или модуль защиты электропитания, расположенный в пускателе. При повышении или понижении напряжения, разбалансе фаз, пропадании напряжения фазы или неправильном порядке подключения фаз система управления обнаруживает это и своевременно отключает чиллер.

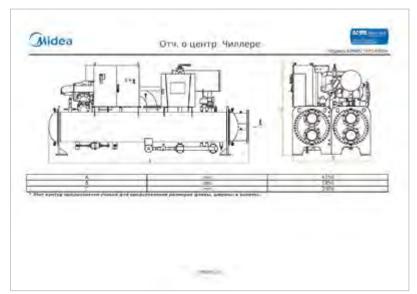
Защита от неисправности пускателя

Чиллер оснащен защитой от неисправности пускателя, которая обеспечивает отключение электродвигателя компрессора от сети электропитания, если параметры электродвигателя достигают предельных значений. Контроллер включает и выключает чиллер посредством стартера. Если стартер неисправен и не отключает электродвигатель компрессора от сети электропитания в аварийной ситуации, контроллер обнаруживает неисправность и незамедлительно выключает чиллер.


Программное обеспечение для подбора

Независимое программное обеспечение позволяет подобрать наилучшую конфигурацию компонентов в соответствии с требованиями к системе ОВиК. После ввода основных параметров, таких как холодопроизводительность, коэффициент загрязнения, число проходов, данные сети электропитания и т. п., в перечне изделий отображаются номинальные значения и физические данные типовых комбинаций «компрессор — испаритель — конденсатор». Группа НИОКР и специалисты по программному обеспечению Midea своевременно обновляют данные об изделиях, и заказчики могут всегда получить уточненную информацию через Интернет.





Интерфейс ПО для подбора

Отчет о результатах подбора

Опции и дополнительные принадлежности

Входные/выходные соединения для воды

В конденсаторе и испарителе стандартного исполнения предусмотрены соединения фланцевого типа. По дополнительному заказу могут быть установлены соединения victaulic (быстроразъемные муфты)

Кожух высокого давления

В стандартном исполнении кожух испарителя и конденсатора рассчитан на давление 1,0 МПа. Опционально может быть установлен кожух на давление 1,6 или 2,0 МПа.

Кожух в судовом исполнении

Конденсатор и испаритель опционально могут быть оснащены кожухом на стороне соединения водяных труб в судовом исполнении. Это обеспечивает удобный доступ к трубам для осмотра и чистки, а также их снятие без нарушения соединений трубной обвязки.

Число проходов

Чиллер в стандартном исполнении рассчитан на конструкцию конденсатора и испарителя с 2 проходами. По дополнительному заказу возможно изготовление чиллеров с 1 или 3 проходами.

Частотно-регулируемый электропривод

Изделия производительностью менее 4600 кВт могут оснащаться электроприводом VSD.

Пускатель чиллера

В стандартном исполнении чиллер оснащен пускателем «треугольник — звезда». Опционально для низковольтных чиллеров может использоваться устройство плавного пуска, для высоковольтных чиллеров (3000-11 000 В) возможна организация пуска непосредственным включением в сеть (DOL).

Управление последовательностью работы чиллеров

Для мониторинга и управления работой на стороне низкого давления установки с несколькими агрегатами могут оснащаться менеджером батареи чиллеров.

Виброизоляция

Дополнительные опции заводского изготовления — пружинный демпфер и резиновая вибропрокладка.

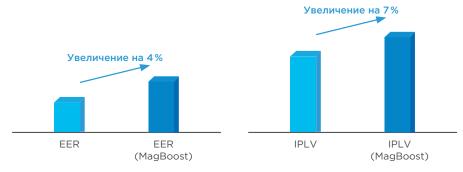
Сдвоенные компрессоры

Для большей производительности или надежного резервирования системы чиллеров может быть поставлена система со сдвоенными компрессорами.

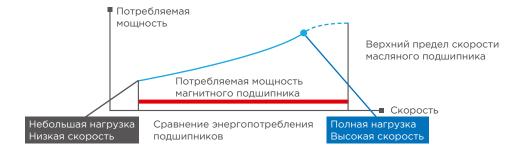
Посекционная транспортировка

Возможна транспортировка чиллера по частям и сборка его на месте под руководством специалистов Midea.

Эксплуатационные испытания в присутствии заказчика


По запросу изготовитель может провести испытания в присутствии заказчика на производственных площадках Midea.

Безмасляные и высокоэффективные


Центробежные чиллеры серии MagBoost сочетают в своей конструкции технологию магнитных подшипников, аэродинамическую технологию газового тракта, синхронный электродвигатель с постоянными магнитами и технологию испарения со сплошной падающей пленкой. Кроме этого, используется уникальная конструкция двухступенчатого сжатия Midea, которая повышает энергоэффективность при полной нагрузке на 4 % и при частичной нагрузке — на 7 %* по сравнению с традиционными центробежными чиллерами с магнитными подшипниками.

^{*} Приведенные данные получены в результате сравнения средней энергоэффективности новых и предыдущих поколений чиллеров Midea с магнитными подшипниками

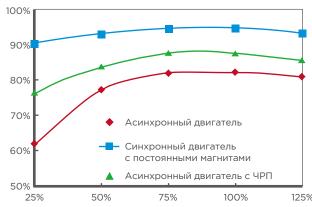
Технология магнитных подшипников

- Магнитный подшипниковый узел, включающий радиальный магнитный подшипник, упорный магнитный подшипник и датчик положения, отличается низким энергопотреблением, высокой несущей способностью и высокой надежностью.
- Использование магнитных подшипников позволяет исключить дополнительные потери на нагрев в парах трения. Потребляемая мощность магнитного подшипника составляет всего 0,4 кВт. Это приблизительно от 2 до 10% энергопотребления, характерного для масляных подшипников.

- Чем выше скорость, тем более энергоэффективным является магнитный подшипник по сравнению с масляным подшипником.
- Контроль положения подшипника 20 000 раз в секунду позволяет производить мгновенную регулировку усилий подшипника и обеспечивать оптимальное положение для левитации ротора.
- Технология интеллектуальной компенсации вибраций используется для контроля скорости двигателя, снижения вибраций и шума в режиме реального времени.

Аэродинамическая технология газового тракта

Математическое моделирование, использованное при конструировании компрессора, а именно — рабочего колеса и газового тракта, позволило оптимизировать общую аэродинамическую эффективность, увеличить КПД компрессора и снизить уровень шума.


Анализ поля потока при последовательном двухступенчатом сжатии

Технология синхронного электродвигателя с постоянными магнитами

- Эффективность электродвигателя превышает 96% во всем рабочем диапазоне, при этом максимальная эффективность достигает 97%.
- Технология пространственно-векторной широтно-импульсной модуляции (SVPWM) используется для регулирования скорости. Точная и эффективная работа достигается в соответствии с изменениями условий эксплуатации. Пусковой ток небольшой, рабочий ток низкий, поэтому эксплуатационные расходы на электроэнергию в течение всего срока эксплуатации невелики.
- Система контроля температуры статора и удлинение вала ротора в режиме реального времени обеспечивают точное и высоконадежное охлаждение двигателя.

Электродвигатель с постоянными магнитами

Скорость нагрузки (рабочая мощность / номинальная мощность)

Технология испарения со сплошной падающей пленкой

Технология испарения со сплошной падающей пленкой: распыление обеспечивает образование пленки жидкого хладагента и его испарение с поверхности труб испарителя, что значительно повышает эффективность теплообмена и позволяет на 40% сократить заправку хладагента. Компания Midea использует запатентованную технологию для обеспечения равномерного распределения хладагента, что максимально увеличивает теплообменную поверхность и повышает эффективность всей системы.

Испаритель затопленного типа

Технология со сплошной падающей пленкой позволяет на 40% сократить объем заправки хладагента по сравнению с испарителем затопленного

Смешанная падающая пленка

Технология со смешанной падающей пленкой позволяет на 25% сократить объем заправки хладагента по сравнению с испарителем затопленного типа.

Сплошная падающая пленка

Процентное содержание жидкости стремится к нулю

Технология контроля подшипников

- В системе управления подшипниками используется перспективная технология компенсации вибраций, которая определяет и контролирует положение на высокой частоте, чтобы эффективно снизить воздействие вибрации на вращающийся вал вследствие дисбаланса.
- Динамическое сканирование и регулировка положения с частотой 20 кГц, а также управление положением с микронной точностью обеспечивают точное положение левитации вала.

Технология управления самогенерацией, разработанная Midea

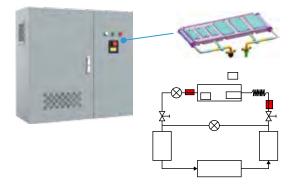
- В случае сбоя электропитания компрессор автоматически переключается в режим ИБП, т. е. электродвигатель становится генератором, который использует остаточную кинетическую энергию вала двигателя для работы магнитного подшипника до тех пор, пока скорость вращения вала не достигнет скорости, близкой к нулевой.
- Режим самогенерации гарантирует непрерывную подачу электропитания частотой выше 15 Гц на магнитные подшипники устройства и обеспечивает этим левитацию вала.

Резервный подшипник с длительным сроком службы

- В компрессоре установлено два комплекта резервных подшипников в два ряда. Резервный подшипник рассчитан на выполнение более 300 операций приема вращающегося вала при работе на высокой скорости (>20 000 об/мин). Количество операций приема вращающегося вала резервными подшипниками не ограничено при работе на околонулевой скорости (<300 об/мин).</p>
- В резервном подшипнике используется набор высокопрочных тел качения и демпфирующее амортизирующее кольцо, чтобы эффективно остановить высокоскоростное вращение ротора в случае отказа системы магнитных подшипников. Это позволяет избежать износа между магнитным подшипником, датчиком и ротором и, как следствие, повреждения компрессора.

Технология кольцевого охлаждения электродвигателя

- Инновационная технология кольцевого охлаждения позволяет эффективно охлаждать электродвигатель по всей площади (360°), что дополнительно увеличивает его эффективность.
- Пары холодильного агента возвращаются в нижнюю часть двигателя. В полости электродвигателя не скапливается жидкость, поэтому ротор не подвержен риску жидкостного вибровозбуждения.



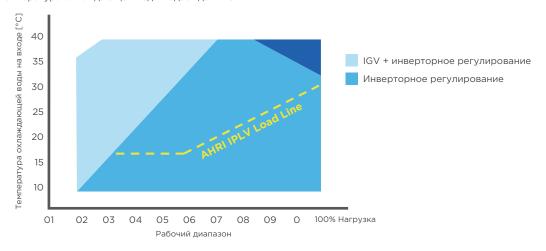
■ Двигатель имеет изоляцию класса F (155°C), три встроенных датчика температуры обмотки и трехступенчатую температурную защиту, что существенно увеличивает его надежность.

Микроканальная технология охлаждения VFD хладагентом

- Преобразователь частоты с микроканальным охлаждением хладагентом отличается и компактными размерами, и оптимальной работой.
- Частотно-регулируемый привод работает бесшумно и обеспечивает длительный срок службы электрических компонентов.
- Нет необходимости в регулярном сервисном обслуживании, поскольку отсутствуют проблемы с чисткой и коррозией трубопроводов, которые обычно возникают при использования водяного охлаждения преобразователя частоты.

Низкий уровень шума

- Отсутствие физического контакта между движущимися металлическими частями обеспечивает низкий уровень вибраций и очень тихую работу.
- В специальной конструкции компрессора снижен пневматический шум при прохождении хладагента через рабочее колесо и диффузор, а также используются сопряжения «твердое тело газ твердое тело», чтобы рассеять высокочастотный шум и добиться идеальной звукоизоляции.

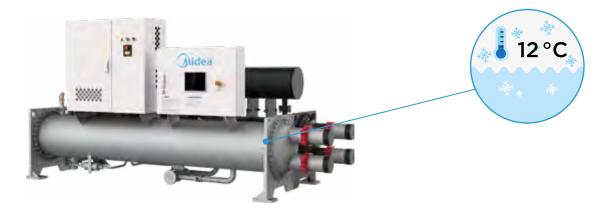


Чиллер серии AirBoost MAG с магнитными подшипниками

Широкий диапазон работы

Минимальная холодильная нагрузка при работе одного компрессора может составлять всего 10 %, кроме того, агрегат может работать нормально, если температура охлаждающей воды падает до 12 °C.

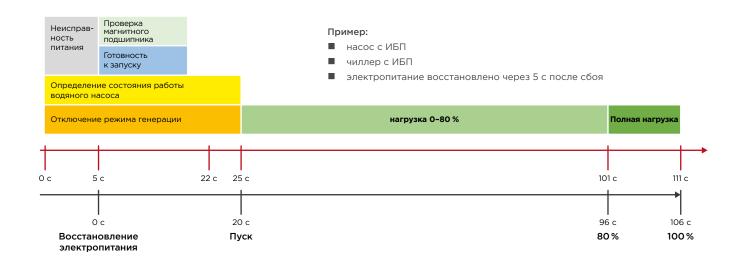
Совместное регулирование нескольких технологий

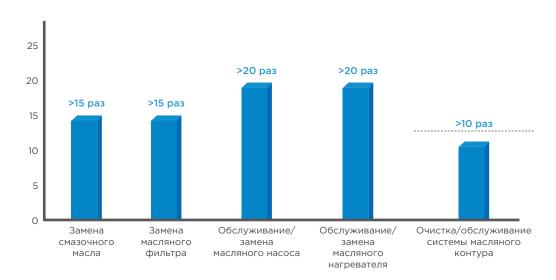

- Центробежный чиллер серии MagBoost с магнитными подшипниками оснащен инвертором и впускным направляющим аппаратом (IGV) для регулирования холодопроизводительности.
- Если нагрузка превышает 15% в нормальных условиях эксплуатации, производительность регулируется исключительно за счет изменения скорости вращения, чтобы избежать дополнительных потерь.

Входной направляющий аппарат (IGV)

Работа при низкой температуре охлаждающей воды

Технология управления работой при низкой температуре окружающей среды обеспечивает стабильную работу при низкой температуре охлаждающей воды и обеспечивает минимальную температуру охлаждающей воды 12 °C.




Технология быстрого запуска

- Технология быстрого запуска центробежного компрессора Midea с магнитными подшипниками позволяет сэкономить около 35 секунд на запуск и начало работы под нагрузкой, если электропитание чиллера пропадает и восстанавливается через 5 секунд после сбоя.
- Чиллеры серии MagBoost легко адаптируются к нестабильным электросетям, поскольку быстро восстанавливают работу в режиме охлаждения, тем самым обеспечивая высокую отказоустойчивость и стабильность холодоснабжения объектов.

Снижение затрат на техническое обслуживание

- Благодаря функции самопроверки состояния магнитных подшипников компрессор с магнитными подшипниками может работать без необходимости регулярного технического обслуживания и контроля за износом подшипников.
- По сравнению с традиционными чиллерами с масляными подшипниками, компрессор без масла позволяет сэкономить на техническом обслуживании, поскольку не требуется регулярно проверять качество масла, производить замену масла и масляного фильтра, производить очистку масляной системы и проверять износ подшипников.
- После многолетней эксплуатации в теплообменнике традиционного чиллера накапливается масло, что существенно влияет на его теплообменные свойства, ухудшая энергоэффективность и увеличивая потребление электроэнергии. В центробежном чиллере с магнитными подшипниками испаритель остается незагрязненным и энергоэффективным в течение всего срока эксплуатации, поэтому серия MagBoost оптимальна для длительной бесперебойной работы в режиме охлаждения, например, в промышленных проектах и центрах обработки данных.

Модель		MWMC_A-FB3H	500	700	810	950	1230	1405
Холодопроизводительно	СТЬ	кВт	597.7	703.2	808.7	949.3	1231	1406
Потребляемая мощность		кВт	93.43	107.7	122.3	143.7	189.8	216.2
EER (холодильный коэфф	рициент)		6,398	6,532	6,61	6,606	6,485	6,506
IPLV			10.20	10.56	11.11	11.79	11.24	11.43
Номинальная мощность д		кВт	150.0	150.0	150.0	150.0	280.0	280.0
Номинальный ток		A	152.6	175.9	199.0	234.8	310.0	353.2
Макс. рабочий ток		Α	167.9	193.5	218.9	258.3	341.0	388.5
Испаритель	Расход воды	м³/ч	97.35	108.6	124.9	146.7	190.1	217.3
	Перепад давления	кПа	31.4	41.9	46.6	47.0	46.5	47.1
	Патрубок для подачи воды	ММ	DN150	DN150	DN150	DN150	DN200	DN200
	Расход воды	м³/ч	114.7	135.1	155.0	182.6	236.6	270.2
Конденсатор	Перепад давления	кПа	26.8	35.8	38.0	38.6	49.4	50.1
	Патрубок для подачи воды	ММ	DN150	DN150	DN150	DN150	DN200	DN200
	Длина	ММ	3500	3500	3500	3500	4150	4150
Габариты блока	Ширина	ММ	1400	1400	1400	1400	1650	1850
	Высота	ММ	1800	1800	1800	1800	1850	1950
Масса транспортировочн	ая	КГ	3110	3110	3225	3350	5100	5980
Масса эксплуатационная		KF	3660	3660	3735	3940	5705	6735

Модель		MWMC_A-FB3H	1580	1760	1935	2110	2285	2460
Холодопроизводительность		кВт	1582	1758	1934	2110	2285	2461
Потребляемая мощность		кВт	233.6	260.3	287.2	318.7	339.3	370.2
EER (холодильный коэфф	рициент)		6,774	6,753	6,733	6,62	6,736	6,649
IPLV			11.35	11.66	11.99	12.01	11.46	11.68
Номинальная мощность д	вигателя	кВт	400.0	400.0	400.0	400.0	560.0	560.0
Номинальный ток		А	381.6	425.3	469.2	520.6	554.3	604.7
Макс. рабочий ток		А	419.8	467.8	516.1	572.7	609.7	665.2
Испаритель	Расход воды	м ³ /ч	244.4	271.6	298.8	325.9	353.1	380.3
	Перепад давления	кПа	50.3	52.6	54.6	49.9	67.3	67.6
	Патрубок для подачи воды	MM	DN250	DN250	DN250	DN250	DN300	DN300
	Расход воды	м³/ч	302.8	336.7	370.6	405.8	438.9	473.0
Конденсатор	Перепад давления	кПа	58.6	60.5	57.2	59.7	65.4	66.0
	Патрубок для подачи воды	MM	DN250	DN250	DN250	DN250	DN300	DN300
	Длина	ММ	4700	4700	4700	4700	5050	5050
Габариты блока	Ширина	MM	2050	2050	2050	2050	2000	2000
	Высота	ММ	2450	2450	2450	2450	2200	2200
Масса транспортировочн	ая	KF	7670	7800	7980	8170	10820	12050
Масса эксплуатационная		KF	8630	8830	9090	9360	12030	13330

Модель		MWMC_A-FB3H	2635	2810	2990	3165	3340	3515
Холодопроизводительно	СТЬ	кВт	2637	2813	2989	3164	3340	3516
Потребляемая мощность		кВт	390.4	421.3	461.6	460.7	487.5	515.7
EER (холодильный коэфф	оициент)		6,754	6,676	6,475	6,868	6,851	6,818
IPLV			11.78	11.93	11.91	11.81	11.84	11.95
Номинальная мощность д		кВт	560.0	560.0	560.0	800.0	800.0	800.0
Номинальный ток		А	637.9	688.3	754.1	752.7	796.5	842.5
Макс. рабочий ток		А	701.7	757.1	829.5	828.0	876.2	926.8
Испаритель	Расход воды	м³/ч	407.4	434.6	461.7	488.9	516.1	543.2
	Перепад давления	кПа	67.5	66.5	66.7	56.1	55.2	54.5
	Патрубок для подачи воды	MM	DN300	DN300	DN300	DN300	DN300	DN300
	Расход воды	м³/ч	506.7	540.3	575.2	605.8	639.6	673.7
Конденсатор	Перепад давления	кПа	66.1	66.0	67.5	72.2	72.2	72.3
	Патрубок для подачи воды	MM	DN300	DN300	DN300	DN300	DN300	DN300
	Длина	MM	5050	5050	5050	4750	4750	4750
Габариты блока	Ширина	ММ	2000	2000	2000	2950	2950	2950
	Высота	MM	2200	2200	2200	2650	2650	2650
Масса транспортировочн	ая	KF	12170	12320	12430	11990	12140	12300
Масса эксплуатационная		KF	13520	13752	13925	13720	13950	14180

Модель		MWMC_A-FB3H	3865	4570	4920	5630	5980	6330
Холодопроизводительно	СТЬ	кВт	3868	4571	4922	5626	5977	6329
Потребляемая мощность		кВт	578.2	706.2	713.0	832.3	899.9	945.9
EER (холодильный коэфф	оициент)		6,689	6,914	6,904	6,759	6,642	6,628
IPLV			12.11	12.08	12.10	12.03	12.00	12.05
Номинальная мощность д	вигателя	кВт	800.0	1200.0	1200.0	1200.0	1200.0	1200.0
Номинальный ток		А	944.6	1080	1164.8	1359.8	1470.2	1560
Макс. рабочий ток		А	1039.1	1188.0	1281.3	1495.8	1617.2	1716.0
Испаритель	Расход воды	м³/ч	597.5	706.2	760.5	869.1	923.5	977.8
	Перепад давления	кПа	55.3	64.4	64.4	65.2	64.4	65.1
	Патрубок для подачи воды	MM	DN300	DN400	DN400	DN400	DN400	DN400
	Расход воды	м³/ч	741.5	877.0	943.1	1079.0	1149.0	1223.0
Конденсатор	Перепад давления	кПа	72.6	63.2	63.3	64.3	64.6	64.5
	Патрубок для подачи воды	MM	DN300	DN400	DN400	DN400	DN400	DN400
	Длина	MM	4750	5290	5290	5290	5290	5290
Габариты блока	Ширина	MM	2950	3300	3300	3300	3300	3300
	Высота	MM	2650	3050	3050	3050	3050	3050
Масса транспортировочн	ая	KF	12590	19670	19990	20830	21040	21360
Масса эксплуатационная		KF	14610	24660	25120	26350	26660	27120

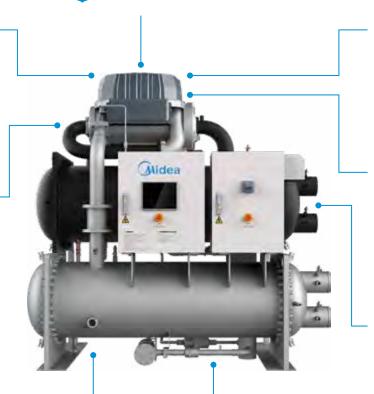
Конструктивные и функциональные особенности

R134a CENTRIFUGAL

MWMC_B-FB3YA

МаgBoost Apex — это безмасляный центробежный чиллер нового поколения Midea, использующий запатентованную технологию магнитных подшипников. Помимо высокой эффективности, стабильности и надежности, МagBoost Apex отличается широким рабочим диапазоном и бесшумной работой. Чиллер включает в себя ряд передовых технологий Midea, включая специальные аэродинамические фреонопроводы между ступенями компрессора, систему управления магнитными подшипниками, фреоновое охлаждение электрических компонентов компрессора и высокоэффективные синхронные двигатели с постоянными магнитами. Система отличается высокой гибкостью и адаптивностью, что делает ее идеальной для различных категорий объектов, включая аэропорты, гостиницы, медицинские объекты, крупные бизнес-центры, объекты промышленности и торговые центры, предоставляя клиентам эффективное и энергосберегающее решение для экологичного строительства. За счет возможности модульного объединения до 16 блоков, компактных габаритов и специальной конструкции расположения узлов и агрегатов чиллеры идеально подходят для реконструируемых зданий и объектов со строгими требованиями к габаритам и массе перемещаемого оборудования.

Компрессор рассчитан на 30 лет службы.


Механическая и электрическая части размещены в едином герметичном корпусе с повышенной степенью защиты (IP67). Благодаря новой системе терморегулирования значительно повышается надежность, долговечность и стабильность работы чиллера.

Используя аэродинамические технологии проектирования, применяемые в аэрокосмической отрасли, центробежные компрессоры Midea достигают более высокой эффективности при полной нагрузке. Система сохраняет высокую эффективность при частичных нагрузках благодаря использованию магнитных подшипников, обеспечивая IPLV до 11,63.

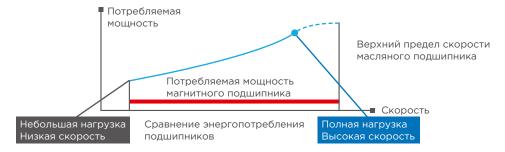
Чиллер спроектирован для удобства транспортировки, позволяя поднимать его на объекте при помощи стандартного 3-тонного грузового лифта и с помощью вилочного погрузчика. Модульная конструкция позволяет объединять до 16 устройств. Функция управления «ведущий — ведомый» устраняет необходимость в дополнительной системе группового управления.

Двухступенчатая конструкция компрессора совместно с технологиями шумоподавления снижает уровень звукового давления при работе до 70 дБ(А). Чиллер использует хладагент R134a, опционально может работать на хладагенте R1234ze(E)

Благодаря системе двойной защиты, сочетающей функцию самогенерации и аварийные подшипники повышенной надежности, компрессор рассчитан более чем на 300 безопасных аварийных остановок с максимальной производительности в случае аварийного отключения электропитания.

Затопленный испаритель уменьшает требуемый объем хладагента, одновременно повышая эффективность теплообмена на 25- 30% и минимизируя воздействие на окружающую среду.

Все основные узлы центробежных компрессоров с магнитными подшипниками компании Midea разрабатываются и изготавливаются на собственном заводе.


Единый корпус компрессора

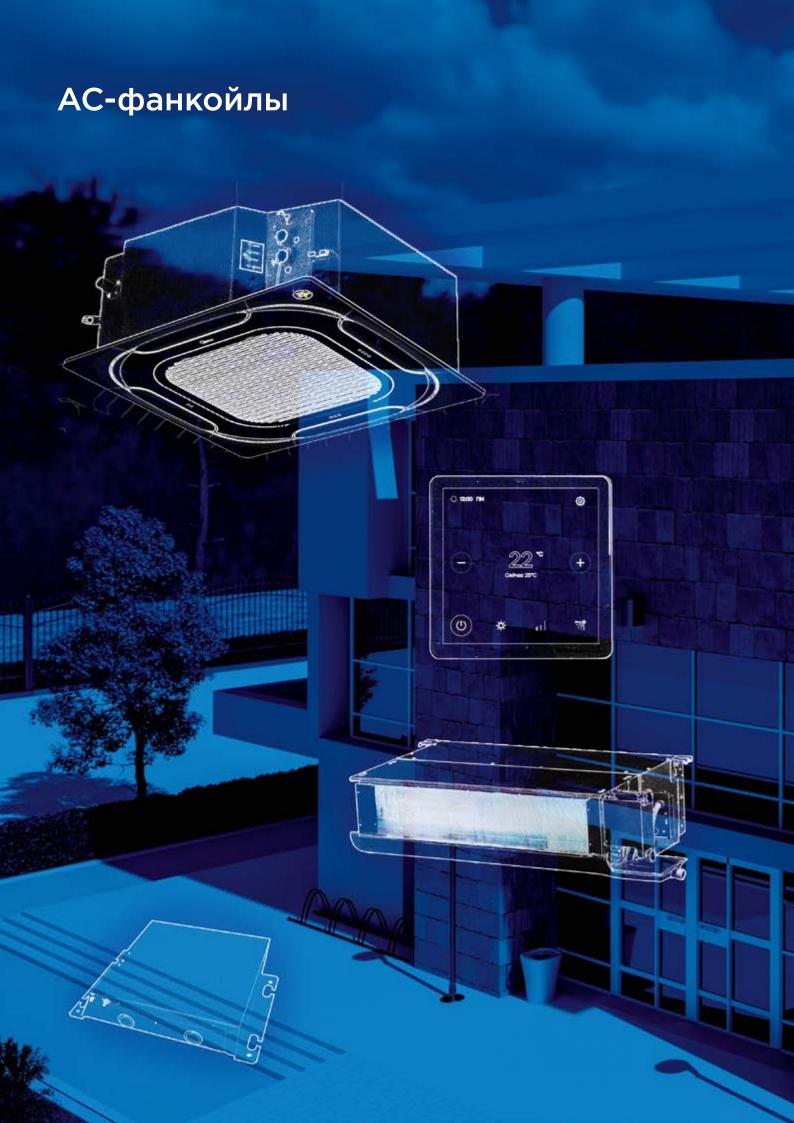
Компрессор на магнитных подшипниках, двигатель, система управления подшипниками и ЧРП собраны в единую конструкцию, что позволяет уменьшить габариты системы охлаждения на 50% по сравнению с обычными системами. Компрессор имеет степень защиты IP67, что обеспечивает его защиту от воды, коррозии и пыли.

Технология магнитных подшипников

- Магнитный подшипниковый узел, включающий радиальный магнитный подшипник, упорный магнитный подшипник и датчик положения, отличается низким энергопотреблением, высокой несущей способностью и высокой надежностью.
- Использование магнитных подшипников позволяет исключить дополнительные потери на нагрев в парах трения. Потребляемая мощность магнитного подшипника составляет всего 0,4 кВт. Это приблизительно от 2 до 10% энергопотребления, характерного для масляных полципников

- Чем выше скорость, тем более энергоэффективным является магнитный подшипник по сравнению с масляным подшипником.
- Контроль положения подшипника 20 000 раз в секунду позволяет производить мгновенную регулировку усилий подшипника и обеспечивать оптимальное положение для левитации ротора.
- Технология интеллектуальной компенсации вибраций используется для контроля скорости двигателя, снижения вибраций и шума в режиме реального времени

Технология контроля подшипников


- В системе управления подшипниками используется перспективная технология компенсации вибраций, которая определяет и контролирует положение на высокой частоте, чтобы эффективно снизить воздействие вибрации на вращающийся вал вследствие дисбаланса.
- Динамическое сканирование и регулировка положения с частотой 20 кГц, а также управление положением с микронной точностью обеспечивают точное положение левитации вала.

Модель		MWMC_B-FB3YA	460	530	600	630	700
Холодопроизводите.	льность	кВт	457.1	527.4	597.7	632.9	703.2
Потребляемая мощн	ость	кВт	70.66	81.86	94.04	95.90	107.8
COP		-	6.469	6.443	6.356	6.599	6.522
IPLV		-	11.2	11.32	11.46	11.42	11.63
Номинальная мощно	сть двигателя	кВт	110	110	110	120	120
Номинальный ток		A	115.4	133.7	153.6	156.7	176.1
Макс. рабочий ток		A	126.9	147.1	169.0	172.4	193.7
Испаритель	Расход воды	м³/ч	70.62	81.48	92.4	97.8	108.6
	Перепад давления	кПа	65.3	65.2	65.3	65.3	65.1
	Патрубок для подачи воды	ММ	DN150	DN150	DN150	DN150	DN150
	Расход воды	M ³ /4	87.49	101.2	115.3	121.4	135.1
Конденсатор	Перепад давления	кПа	68.1	68.2	68.7	67.9	68.1
	Патрубок для подачи воды	ММ	DN150	DN150	DN150	DN150	DN150
	Длина	ММ	2250	2250	2250	2250	2250
Габариты блока	Ширина	MM	1100	1100	1100	1100	1100
	Высота	ММ	2200	2200	2200	2200	2200
Масса транспортирс	вочная (с хладагентом)	КГ	2350	2399	2446	2471	2520
Масса эксплуатацио	нная	KF	2650	2739	2806	2851	2920

- Производительность и эффективность определены по стандартам АНRI 550/590-2018. Условия на испарителе: температура охлаждаемой воды на входе/выходе 12,22/6,67°C, коэффициент загрязнения 0,0176 м².°С/кВт. Условия на конденсаторе: температура охлаждающей воды на входе/выходе 29,44 /34,61°C, коэффициент загрязнения 0,0440 м².°С/кВт.
- 2. Расчетное максимально допустимое рабочее давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление по специальному требованию (опция).
- Информация на фактическом изделии имеет преимущественную силу.
 В результате предпринимаемых усилий по постоянному улучшению данного изделия вышеуказанные параметры могут быть изменены. Обратитесь к заводским параметрам изделия.
 5. Стандартный чиллер по умолчанию не заправлен хладагентом, а чиллеры, заправленные хладагентом перед поставкой, требуют настройки.

Модельный ряд АС-фанкойлов

Фанкойл АС

Кассетный тип

однопоточный

МКС-R-В (2-трубный)

Модель	300	400
Мощность, кВт	3.04	3.79

Кассетный тип

четырехпоточный компактный 600×600

МКD (2-трубный) — склад

Модель	300	400	500
Мощность, кВт	3.0	3.7	4.5

МКD-S (4-трубный) — склад

Модель	300	400	500
Мощность, кВт	2.5	2.9	3.5

Кассетный тип

четырехпоточный стандартный

МКА-R (2-трубный) — склад

Модель	600	750	850	950	1200	1500
Мощность, кВт	5.7	7	7.27	8.22	10.39	12.9

МКА-F (4-трубный) — склал

Модель	600	750	850	950	1200	1500
Мощность, кВт	5.1	5.93	6.17	6.7	9.28	10.58

Канальный тип

низко- и средненапорный

MK-A3SCBS	MK-A3SCBS (2-трубный, 12 Па) 3-рядный									
Модель	02	03	04	05	06	07	08	10	12	14
Мощность, кВт	2.35	3.40	4.41	5.00	6.00	7.05	8.03	9.00	11.20	13.00

MK-A3HCBS (2-трубный, 30 Па) 3-рядный Модель 02 03 04 05 06 07 08 10 12 14											
Модель	02	03	04	05	06	07	08	10	12	14	
Manuscati VPT	2 50	7.40	4 41	E 00	6.00	7 20	0.07	0.27	11 20	17 00	

MK-A3UCBS	(2-TP	убнь	ый, 5	0 Па)) — c	клад			3-ря	дный
Модель	02	03	04	05	06	07	08	10	12	14
Мощность, кВт	2.50	3.40	4.41	5.00	6.00	7.20	8.03	9.27	11.20	13.00

MKT4-FG50-	CL (1-тру	'бныі	i, 50	Па) •	– CKJ	ад		4-ряд	цный
Модель	200	300	400	500	600	700	800	1000	1200	1400
Мошность, кВт	2.25	3.0	4.1	4.6	5.4	6.3	7.4	8.3	9.9	11.6

Настенный тип

МКG-С (2-трубный)

THE C (2 TP)	OTTBIVI)				
Модель	250	300	400	500	600
Мощность, кВт	1.94	2.64	2.94	4.01	4.61

Напольно-потолочный тип

Серия Н1, в корпусе

MKH1-R3 (2-T)	оубный)	— скла	Д		3-	рядный
Модель	150	250	350	500	700	800
Мощность, кВт	1.58	2.51	3.75	4.59	5.29	6.22
MKH1-R4 (2-T	рубный))			4-	рядный
Модель	150	250	350	500	700	800

Мощность, кВт	2.16	2.72	4.09	5.21	6.16	6.66			
МКН1-F-R4 (4-трубный) — склад 4-рядный									
Молель	150	250	350	500	700	800			

Мощность, кВт 1.87 2.58 3.99 4.92 5.84 6.18

Напольно-потолочный тип

Серия Н2, в корпусе

MKH2-R3 (2-T	ИКН2-R3 (2-трубный)						
Модель	150	250	350	500	700	800	
Мощность, кВт	1.65	2.65	3.85	4.65	6.00	7.35	
MKH2-R4 (2-T	рубный)			4-	рядный	
Модель	150 250 350 500 700 800						
Мощность, кВт	2.25	3.05	4.20	5.35	6.75	8.25	
MKH2-F-R4 (4	I-трубны	ый)			4-	рядный	
Модель	150	250	350	500	700	800	
Мощность, кВт	1.95	2.89	4.09	5.05	6.40	7.65	

Напольно-потолочный тип

Серия Н3, без корпуса

MKH3-R3 (2-T	рубный)			3-	рядный
Модель	150	250	350	500	700	800
Мощность, кВт	6.00	7.35				
MKH3-R4 (2-T	4-	рядный				

MAT (2)	руспыи) Croic	14			т рлдпый			
Модель	150	250	350	500	700	800			
Мощность, кВт	2.25	3.05	4.20	5.35	6.75	8.25			
MKH3-F-R4 (4	4-	рядный							
Модель	150	250	350	500	700	800			

Канальный тип

высоконапорный

Мощность, кВт

МКТ3H-G70(100)A (2-трубный, 70-100 Па) — склад 3-рядный									
Модель	800	1000	1200	1400	1600	1800	2200		
Мощность, кВт	6.6	8.8	10.0	12.0	14.1	15.8	19.9		

Настенный тип

МКG-D (2-трубный)

Модель	250	300	400	500	600
Мощность, кВт	1.94	2.64	2.94	4.01	4.61

однопоточный

MKC

2-трубный

Индивидуальные пульты

RO5/BGE, в комплекте

KJR-75A/BK-E, опция

Центральный пульт

Фанкойл 2-трубный

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

MD-NIM01, опция

Подключение к центральному пульту ССМ30/ВКЕ-А осуществляется через модуль под-ключения MD-NIM01, который поставляется отдельно.

Инструкция

Низкий уровень шума

Возможность гибкой установки

Оптимальное распределение воздуха

Сверхтонкий корпус

АС-двигатель вентилятора фанкойла

Компактное размещение

2-трубный			дренажны насос	ни в комплекте перезапуск в комплекте			
Внутренний блок			MKC-300R-B	MKC-400R-B			
Декоративная панел	1b		мво	Q1-02D			
	Производительность (выс./ сред./ низ.)	кВт	3.04/2.79/2.56	3.79/3.58/3.38			
Охлаждение	Потребляемая мощность (выс./ сред./ низ.)	Вт	32/22/15	40/30/25			
Охлаждение	Расход воды	м³/ч	0.52/0.48/0.44	0.65/0.61/0.58			
	Перепад давлений по воде	кПа	14.00/11.85/9.88	20.00/17.67/15.84			
	Производительность (выс./ сред./ низ.)	кВт	5.13/4.69/4.04	6.41/5.86/5.11			
Нагрев	Потребляемая мощность (выс./ сред./ низ.)		32/22/15	40/30/25			
пат рев	Расход воды	м³/ч	0.52/0.48/0.44	0.65/0.61/0.58			
	Перепад давлений по воде	кПа	14.00/11.85/9.88	20.00/17.67/15.84			
Электропитание B, Гі Ф			220,50,1				
Расход воздуха (выс./	сред./низ.)	м³/ч	510/450/400	630/560/500			
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	36/34/32	37/35/34			
Декоративная панель	Габариты (Ш×В×Г)	ММ	1180×25×465	1180×25×465			
декоративная панель	Macca	KF	3.5	3.5			
Внутренний блок	Габариты (Ш×В×Г)	MM	1054×155×428	1054×155×428			
внутренний олок	Macca	KF	12.8	12.8			
Трубные соединения	Диаметр труб на вх./вых.	дюйм		G ¹ ∕ ₂			
труоные соединения	Диаметр дренажа	ММ		Ø25			
Встроенная дренажна	я помпа, напор	ММ		750			
3-ходовой клапан с четырьмя портами			KF	V15A			
Опциональные	Подключение сетевого и центрального упра	вления	ния МD-NIM01 - 1 шт. на фанкойл				
элементы	3-ходовой клапан, без трубной обвязки		FV:	3D15V1			
	2-ходовой клапан, без трубной обвязки		FV:	2D15V1			

^{1.} Выс. — высокие обороты вентилятора; сред. — средние обороты вентилятора; низ. — низкие обороты вентилятора. 2. Условия охлаждения: температура воды на входе 7°C, температура воды на входе 27°C (сух. терм.) / 19°C (влажн. терм.).

^{3.} Условия нагрева: температура воды на входе 50°C, температура воздуха на входе 20°C (сух. терм.). Расход воды, как в режиме охлаждения. 4. Уровень шума измерялся в полубезэховой камере.

Четырехпоточный компактный

MKD

2-трубный

STOCK

Фанкойл 2-трубный

Центральный

Индивидуальные пульты

R51/E, в комплекте

пульт

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

ССМ-30/ВКЕ-А, опция

DC70W / DC80W NEW, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

АС-двигатель вентилятора фанкойла

Технические характеристики

2-трубный, четырехпоточный компактный

в комплекте

перезапуск

1.2.	It is a second of the second o		HACOC							
Внутренний блок			MKD-300	MKD-400	MKD-500					
Декоративная панел	lb	T-MBQ4-03B								
	Производительность (выс./ сред./ низ.)	кВт	3/2.58/2.16	3.7/3.18/2.66	4.5/3.6/3.06					
Охлаждение	Расход воды	м³/ч	0.52/0.42/0.34	0.63/0.54/0.45	0.77/0.61/0.53					
	Перепад давлений по воде	кПа	10.7/9.11/7.15	20.0/15.0/10.0	12.56/8.37/6.57					
	Производительность (выс./ сред./ низ.)	кВт	4/3.5/3.08	5.1/4.3/3.83	6/4.76/4.07					
Нагрев	Расход воды	м³/ч	0.68/0.6/0.52	0.82/0.7/0.65	1/0.8/0.69					
	Перепад давлений по воде	кПа	15.4/15/10	22/17/15.2	26/22/19					
Электропитание		В, Гц, Ф		220,50,1						
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	50/40/32	70/50/40	95/53/42					
Расход воздуха (выс./	сред./низ.)	м³/ч	510/440/360	680/580/480	850/730/600					
Уровень звукового давления (выс./сред./низ.)		дБ(А)	36/33/28	42/39/32	45/42/34					
	Габариты (Ш×В×Г)	ММ	647×50×647	647×50×647	647×50×647					
Декоративная панель	Macca	KF	2.6	2.6	2.6					
Внутренний блок	Габариты (Ш×В×Г)	MM	575×261×575	575×261×575	575×261×575					
внутреннии олок	Macca	КГ	16.5	16.5	16.5					
T	Диаметр труб на вх./вых.	дюйм		G ³ / ₄						
Трубные соединения	Диаметр дренажа	MM		Ø25						
Встроенная дренажна	я помпа, напор	MM		750						
	3-ходовой клапан с четырьмя портами			KFV21A						
	Комплект трубной обвязки для KFV21A		KFP21-Z1							
Эпциональные	Дренажный поддон 3-ходового клапана		FD-Z/KFD-Z							
элементы	Подключение сетевого и центрального уп	равления	Встроен							
	3-ходовой клапан, без трубной обвязки			FV3D20V1						
	2-ходовой клапан, без трубной обвязки			FV2D20V1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 50°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Четырехпоточный компактный

MKD-S

4-трубный

STOCK

Фанкойл 4-трубный

Центральный

пульт

Индивидуальные пульты

R51/E, в комплекте

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

ССМ-30/ВКЕ-А, опция

DC70W / DC80W NEW, опция

Фанкойл в стандартном исполнении имеет порт XYE. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

АС-двигатель вентилятора фанкойла

Технические характеристики

Автоматический

4-трубный, четы	ырехпоточный компактный			насос				
Внутренний блок			MKD-300S	MKD-400S	MKD-500S			
Декоративная панел	1b			T-MBQ4-03B				
	Производительность (выс./ сред./ низ.)	кВт	2.5/2.2/1.76	2.9/2.55/2.04	3.5/2.87/2.15			
Охлаждение	Расход воды	м³/ч	0.43/0.38/0.30	0.50/0.44/0.35	0.60/0.49/0.37			
	Перепад давлений по воде	кПа	22.00/17.04/10.90	16.00/12.39/7.84	24.00/16.14/9.05			
	Производительность (выс./ сред./ низ.)	кВт	3.7/3.29/2.92	4.6/3.82/3.4	5.1/4.03/3.52			
Нагрев	Расход воды	м³/ч	0.32/0.28/0.25	0.40/0.33/0.29	0.44/0.35/0.29			
	Перепад давлений по воде	кПа	17.00/13.47/10.61	23.00/16.23/12.59	27.00/16.85/12.12			
Электропитание		В, Гц, Ф		220,50,1				
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	50/40/30	70/50/40	95/65/50			
Расход воздуха (выс./сред./низ.)		м³/ч	510/440/360	680/580/480	850/730/600			
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	36/33/28	42/39/32	45/42/34			
Паманания	Габариты (Ш×В×Г)	MM	647×50×647	647×50×647	647×50×647			
Декоративная панель	Macca	КГ	2.6	2.6	2.6			
Внутренний блок	Габариты (Ш×В×Г)	MM	575×261×575	575×261×575	575×261×575			
знутреннии олок	Macca	КГ	16.5	16.5	16.5			
T	Диаметр труб на вх./вых.	дюйм	холод	ная вода RC ³ / ₄ ; горячая вода	a: RC ¹ / ₂			
Трубные соединения	Диаметр дренажа	MM		Ø25				
Встроенная дренажна	я помпа, напор	MM		750				
	3-ходовой клапан с четырьмя портами			KQV21A				
	Комплект трубной обвязки для KQV21A		KQP21-Z1					
Опциональные	Дренажный поддон 3-ходового клапана		FD-Z/KFD-Z					
элементы	Подключение сетевого и центрального уп	равления	Встроен					
	3-ходовой клапан, без трубной обвязки			FV3D20V1+FV3D15V1				
	2-ходовой клапан, без трубной обвязки			FV2D20V1+FV2D15V1				

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 50°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Четырехпоточный стандартный

MKA-R

2-трубный

Инструкция

STOCK

Индивидуальные

RO5/BGE, в комплекте

KJR-29B/BK-E, опция

DC70W / DC80W NEW, опция

Фанкойл 2-трубный

Центральный пульт

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

АС-двигатель вентилятора фанкойла

ИК-пульт

Фильтр

2-трубный, четырехпоточный станлартный

2-трубныи, четь	ырехпоточныи стандартныи								
Внутренний блок			MKA-600R	MKA-750R	MKA-850R	MKA-950R	MKA-1200R	MKA-1500R	
Декоративная панел	1b		T-MBQ4-02C						
	Производительность (выс./ сред./ низ.)	кВт	5.7/4.73/3.96	7/5.62/4.72	7.27/6.46/5.71	8.22/7.39/6.54	10.39/9.25/8.2	12.9/11.51/10.21	
Охлаждение	Расход воды	м³/ч	1.03/0.88/0.76	1.20/0.96/0.80	1.28/1.15/1.02	1.41/1.27/1.12	1.80/1.60/1.40	2.20/1.90/1.80	
	Перепад давлений по воде	кПа	24.3/18.2/13.9	30.0/20.1/15.00	24.4/20.2/16.0	27.14/21.98/18.05	22/17/14.1	40/27.2/25	
	Производительность (выс./ сред./ низ.)	кВт	9.66/7.72/6.27	11.55/9.24/7.51	12.42/9.93/8.07	13.85/11.08/9	17.58/14.06/11.42	17.6/14.08/11.44	
Нагрев	Расход воды	м³/ч	1.20/1.02/0.85	1.95/1.55/1.23	1.43/1.28/1.10	2.35/1.8/1.53	2.97/2.35/1.94	2.9/2.38/1.9	
	Перепад давлений по воде	кПа	29.5/21.7/15.6	37.2/23.4/18.4	28.3/22.8/17.2	31.65/26.19/22.08	28.1/20.7/17.4	50/35/25	
Электропитание		В, Гц, Ф	220,50,1						
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	125/84/74	130/102/93	150/124/106	155/131/106	190/127/109	190/136/109	
Расход воздуха (выс./сред./низ.)			1000/850/720	1250/1060/900	1400/1190/1010	1600/1360/1150	2000/1700/1440	2550/2170/1840	
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	45/41/36	46/42/37	47/43/38	48/44/39	49/45/40	50/46/41	
	Габариты (Ш×В×Г)	MM	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	
Декоративная панель	Macca	KF	6	6	6	6	10.39/9.25/8.2 1.80/1.60/1.40 22/17/14.1 17.58/14.06/11.42 2.97/2.35/1.94 2.81/20.7/17.4 190/127/109 2000/1700/1440 4.9/45/40	6	
Внутренний блок	Габариты (Ш×В×Г)	MM	840×230×840	840×230×840	840×300×840	840×300×840	10.39/9.25/8.2 12. 180/1.60/1.40 18.05 22/17/14.1 1/9 17.58/14.06/11.42 153 2.97/2.35/1.94 12.08 28.1/20.7/17.4 16 190/127/109 16 190/127/109 17.00/1440 19 49/45/40 19 49/45/40 10 9000/1700/1440 10 9000/1700/1440	840×300×840	
внутреннии олок	Macca	KF	25	25	30.5	30.5		31.8	
T6	Диаметр труб на вх./вых.	дюйм			R	$2^{3}/_{4}$			
Трубные соединения	Диаметр дренажа	ММ			Ø	32			
Встроенная дренажна	я помпа, напор	ММ			7.	50			
	3-ходовой клапан с четырьмя портами				KF\	/21A			
	Комплект трубной обвязки для KFV21A				KFP	21-V1			
Опциональные	Дренажный поддон 3-ходового клапана				FD-V/	KFD-V			
элементы	Подключение сетевого и центрального уг	равления	Встроен						
	3-ходовой клапан, без трубной обвязки				FV3[D20V1			
	2-ходовой клапан, без трубной обвязки				FV2	D20V1			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 50°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Четырехпоточный стандартный

MKA-F

4-трубный

STOCK

Индивидуальные

RO5/BGE, в комплекте

Фанкойл 4-трубный

Центральный

пульт

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт XYE, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

АС-двигатель вентилятора фанкойла

Технические характеристики

Фильтр

4-трубный четырехпоточный станлартный

4-труоный, четі	ырехпоточный стандартный								
Внутренний блок			MKA-600F	MKA-750F	MKA-850F	MKA-950F	MKA-1200F	MKA-1500F	
Декоративная панел	1ь				т-мво	4-02C			
	Производительность (выс./ сред./ низ.)	кВт	5.1/4.08/3.76	5.93/4.41/3.94	6.17/5.13/4.59	6.7/5.48/4.85	9.28/7.45/6.5	10.58/7.45/6.5	
Охлаждение	Расход воды	м³/ч	0.87/0.64/0.53	0.97/0.69/0.57	1.06/0.9/0.79	1.15/0.95/0.83	1.6/1.3/1.1	2.1/1.9/1.6	
	Перепад давлений по воде	кПа	15.92/9/6.41	18.79/10.11/7.22	20.4/15/12.5	35/20/15	40/35/30	43.31/38.03/32.4	
	Производительность (выс./ сред./ низ.)	кВт	6.67/5.87/5.07	7.87/6.85/5.9	8.06/6.93/6.05	8.67/7.63/6.59	11.65/10.49/8.85	12.62/11.36/9.47	
Нагрев	Расход воды	м³/ч	0.52/0.4/0.34	0.6/0.44/0.38	0.7/0.6/0.55	0.75/0.67/0.6	1/0.92/0.8	1.5/0.99/0.86	
	Перепад давлений по воде	кПа	24.56/14.6/10.61	33.96/18.52/13.99	44.98/35/28.1	43.91/33.59/29.43	52.91/42.36/36	56.13/46.89/38.9	
Электропитание		В, Гц, Ф	220,50,1						
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	170/120/85	188/135/90	198/140/100	205/145/105	197/135/103	234/165/115	
Расход воздуха (выс./сред./низ.)			1150/800/690	1460/1020/880	1480/1040/890	1720/1200/1030	1860/1300/1110	2100/1470/1260	
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	42/32/26	44/34/28	46/36/30	47/38/32	48/40/34	50/42/36	
	Габариты (Ш×В×Г)	MM	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	
Декоративная панель	Macca	KF	6	6	6	6	33 1.6/1.3/1.1 40/35/30 59 11.65/10.49/8.85 .6 1/0.92/0.8 9.43 52.91/42.36/36 5 197/135/103 130 1860/1300/1110 48/40/34 0 950×45×950 6 40 840×300×840 38	6	
Внутренний блок	Габариты (Ш×В×Г)	MM	840×300×840	840×300×840	840×300×840	840×300×840	840×300×840	840×300×840	
внутреннии олок	Macca	KF	29.1	29.1	29.1	29.1	1.6/1.3/1.1 40/35/30 11.65/10.49/8.85 1/0.92/0.8 5 52.91/42.36/36 197/135/103 1860/1300/1110 48/40/34 950×45×950 6 840×300×840	38	
T6	Диаметр труб на вх./вых.	дюйм		Холод	ная вода: RC ³ /	, 4; горячая вода	a: RC½		
Трубные соединения	Диаметр дренажа	MM			Ø	32			
Встроенная дренажна	яя помпа, напор	MM			7.	50			
	3-ходовой клапан с четырьмя портами				KQ\	/21A			
	Комплект трубной обвязки для KQV21A		KQP21-V1						
Опциональные	Дренажный поддон 3-ходового клапана				FD-V/	KFD-V			
элементы	Подключение сетевого и центрального уг	травления			Вст	роен			
	3-ходовой клапан, без трубной обвязки			FV3D20V1	+FV3D15V1		-	_	
	2-ходовой клапан, без трубной обвязки			FV2D20V1	+FV2D15V1			_	
			1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 50°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный АС

Канальный тип

Напор 12 Па

MK

2-трубный

Инструкция

Индивидуальные пульты

KJR-18B/E, опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

FCU KIT, опция

Центральный пульт

CCM-180A/BWS(A), опция



ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Компактный размер для удобного монтажа

Низкий уровень шума

Система фильтрации воздуха

Защитное покрытие дренажного поддона

АС-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе или на объекте

Фильтр

2-ชางค์นเล้ 3-กุสุกนเล้ หลุมลูกเนเล้

Внутренний блок			MK02A3SCBS	MK03A3SCBS	MK04A3SCBS	MK05A3SCBS	MK06A3SCBS	
	Производительность (выс./ сред./ низ.)	кВт	2.35/2.00/1.50	3.40/2.90/2.21	4.41/3.77/2.90	5.00/4.27/3.36	6.00/5.16/4.06	
Охлаждение	Расход воды	м³/ч	0.40/0.35/0.25	0.58/0.5/0.38	0.76/0.65/0.5	0.86/0.73/0.58	1.03/0.89/0.7	
	Перепад давлений по воде	кПа	24/20/15	24/19/14	24/21/16	24/19/15	38/28/25	
	Производительность (выс./ сред./ низ.)	кВт	3.90/3.09/2.15	5.67/4.52/3.18	7.35/5.89/4.19	8.60/6.93/5.03	9.98/8.14/5.96	
Нагрев	Расход воды	м³/ч	0.66/0.53/0.37	0.96/0.77/0.54	1.25/1.0/0.71	1.46/1.18/0.86	1.7/1.38/1.01	
	Перепад давлений по воде	кПа	20/18/16	20/16/12	20/17/13	24/19/15	31/23/20	
Электропитание		В, Гц, Ф			220,50,1	*		
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	36/25/23	50/28/23	60/47/39	74/69/53	93/68/56	
Расход воздуха (выс./сред./низ.)		м³/ч	340/257/172	510/384/256	680/516/344	850/643/429	1020/784/523	
Внешнее статическое давление		Па			12			
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	35/26.5/23.5	39/27.5/26	41/30.5/24	43/34/28.5	45/36.6/31	
D	Габариты (Ш×В×Г)	MM	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482	
Внутренний блок	Macca	КГ	12.3	14.7	17.6	5.00/4.27/3.36 0.86/0.73/0.58 24/19/15 8.60/6.93/5.03 1.46/1.18/0.86 24/19/15 74/69/53 850/643/429 43/34/28.5 908×243×482 17.6	18.8	
	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄			
Грубные соединения	Диаметр дренажа	MM			Ø19			
	3-ходовой клапан с четырьмя портами				KFV21A			
	Комплект трубной обвязки для KFV21A		KFP21-K2 / KFP21-K2A					
Опциональные	Дренажный поддон 3-ходового клапана		Встроен					
элементы	Подключение сетевого и центрального уг	правления	CE-FCUKZ-03					
	3-ходовой клапан, без трубной обвязки				FV3D20V1			
	2-ходовой клапан, без трубной обвязки				FV2D20V1			


^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 60°C, температура воздуха на входе 21°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Внутренний блок			MK07A3SCBS	MK08A3SCBS	MK10A3SCBS	MK12A3SCBS	MK14A3SCBS	
	Производительность (выс./ сред./ низ.)	кВт	7.05/6.00/4.68	8.03/6.87/5.40	9.00/7.84/6.17	11.20/9.75/7.67	13.00/11.30/8.90	
Охлаждение	Расход воды	м³/ч	1.21/1.03/0.80	1.38/1.18/0.93	1.55/1.35/1.06	1.93/1.68/1.32	2.24/1.94/1.53	
	Перепад давлений по воде	кПа	30/23/20	40/31/25	40/31/23	40/32/24	50/39/31	
	Производительность (выс./ сред./ низ.)	кВт	11.71/9.39/6.81	13.61/10.98/8.02	15.61/12.82/9.36	19.21/15.78/11.53	22.17/18.23/13.37	
Нагрев	Расход воды	м³/ч	1.99/1.60/1.16	2.31/1.87/1.36	2.65/2.18/1.59	3.26/2.68/1.96	4.62/3.1/2.27	
	Перепад давлений по воде	кПа	24/19/16	32/25/20	32/25/19	32/26/20	40/32/25	
Электропитание		В, Гц, Ф			220,50,1			
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	112/97/80	130/114/95	147/118/94	183/133/112	221/177/140	
Расход воздуха (выс./	[/] сред./низ.)	м³/ч	1150/866/578	1360/1031/687	1650/1247/831	2040/1544/1029	2380/1785/1190	
Внешнее статическое давление		Па			12			
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	46/38/30	46/39.1/30	48/40.7/33	50/42.6/33	52/47.1/34	
Dungthoussia 6 flow	Габариты (Ш×В×Г)	ММ	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×482	
Нагрев Электропитание Потребляемая мощно Расход воздуха (выс., Знешнее статическое Уровень звукового да Внутренний блок Грубные соединения Опциональные	Масса	КГ	21.4	25.5	26	33.8	35.3	
Трубина соодинация	Диаметр труб на вх./вых.	дюйм			$RC^{3}/_{4}$			
груоные соединения	Диаметр дренажа	ММ			Ø19			
	3-ходовой клапан с четырьмя портами				KFV21A			
	Комплект трубной обвязки для KFV21A			KF	P21-K2 / KFP21-K	2A		
Опциональные	Дренажный поддон 3-ходового клапана				Встроен			
элементы	Подключение сетевого и центрального уп	равления	CE-FCUKZ-03					
	3-ходовой клапан, без трубной обвязки				FV3D20V1			
	2-ходовой клапан, без трубной обвязки				FV2D20V1			

- 1. Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 60°C, температура воздуха на входе 21°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Канальный тип

Напор 30 Па

MK

2-трубный

Инструкция

Фанкойл 2-трубный АС

пульт

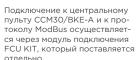
Центральный

пульты

KJR-18B/E, опция

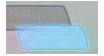
Индивидуальные

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция


FCU KIT, опция

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция



Компактный размер для удобного монтажа

Низкий уровень шума

Система фильтрации воздуха

Защитное покрытие дренажного поддона

АС-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе или на объекте

Левое

Фильтр в комплекте подключение

Технические характеристики

Внутренний блок			мко2А3НСВS	мкозазнсвs	мко4а3нсвѕ	мко5А3HCBS	мко6А3НСВЅ		
	Производительность (выс./ сред./ низ.)	кВт	2.50/2.10/1.56	3.40/2.90/2.21	4.41/3.77/2.90	5.00/4.27/3.36	6.00/5.16/4.06		
Охлаждение	Расход воды	м³/ч	0.43/0.43/0.43	0.58/0.5/0.38	0.76/0.65/0.5	0.86/0.73/0.58	1.03/0.89/0.7		
	Перепад давлений по воде	кПа	27/24/19	24/19/14	24/21/16	24/19/15	38/28/25		
	Производительность (выс./ сред./ низ.)	кВт	4.10/3.20/2.20	5.67/4.52/3.18	7.35/5.89/4.19	8.60/6.93/5.03	9.98/8.14/5.96		
Нагрев	Расход воды	м³/ч	0.7/0.54/0.37	0.96/0.77/0.54	1.25/1.0/0.71	1.46/1.18/0.86	1.7/1.38/1.01		
	Перепад давлений по воде	кПа	22/20/16	20/16/12	20/17/13	24/19/15	31/23/20		
Электропитание		В, Гц, Ф	220,50,1						
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	42/36/29	57/40/32	70/47/40	83/67/56	102/78/64		
Расход воздуха (выс./	'сред./низ.)	м³/ч	340/257/172	510/384/256	680/516/344	850/643/429	1020/784/523		
Внешнее статическое давление		Па			30				
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	37/30/23	40.5/33/26	40.5/33/26	42/36/27	43/37/27		
Внутренний блок	Габариты (Ш×В×Г)	MM	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482		
Бнутренний олок	Масса	KΓ	12.3	14.7	17.6	24/19/15 19 8.60/6.93/5.03 11 1.46/1.18/0.86 24/19/15 83/67/56 4 850/643/429 6 42/36/27 32 908×243×482 17.6 21-K2A	18.8		
Трубные соединения	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄				
груоные соединения	Диаметр дренажа	MM			Ø19				
	3-ходовой клапан с четырьмя портами				KFV21A				
	Комплект трубной обвязки для KFV21A			KI	FP21-K2 / KFP21-K	2A			
Опциональные	Дренажный поддон 3-ходового клапана		Встроен						
элементы	Подключение сетевого и центрального уп	равления	CE-FCUKZ-03						
	3-ходовой клапан, без трубной обвязки				FV3D20V1				
	2-ходовой клапан, без трубной обвязки		FV2D20V1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 60°C, температура воздуха на входе 21°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Внутренний блок			MK07A3HCBS	мковазнсвѕ	мк10А3HCBS	MK12A3HCBS	MK14A3HCBS	
	Производительность (выс./ сред./ низ.)	кВт	7.20/6.13/4.79	8.03/6.87/5.40	9.27/8.08/6.35	11.20/9.75/7.67	13.00/11.30/8.90	
Охлаждение	Расход воды	м³/ч	1.24/1.05/0.82	1.38/1.18/0.93	1.59/1.39/1.09	1.93/1.68/1.32	2.24/1.94/1.53	
	Перепад давлений по воде	кПа	30/23/20	40/31/25	40/31/23	40/32/24	50/39/31	
	Производительность (выс./ сред./ низ.)	кВт	12.00/9.66/7.01	13.60/10.98/8.02	16.00/13.16/9.61	19.20/15.78/11.53	22.16/18.23/13.37	
Нагрев	Расход воды	м³/ч	2.04/1.64/1.19	2.31/1.87/1.36	2.72/2.24/1.63	3.26/2.68/1.96	3.77/3.1/2.27	
	Перепад давлений по воде	кПа	24/19/16	32/25/20	32/25/19	32/26/20	40/32/25	
Электропитание		В, Гц, Ф			220,50,1			
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	121/88/72	135/100/80	169/149/133	206/157/126	245/179/145	
Расход воздуха (выс./сред./низ.)		м³/ч	1190/896/598	1360/1031/687	1700/1284/856	2040/1544/1029	2380/1785/1190	
Внешнее статическое давление		Па			30			
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	46/39/31	44.5/40/33	47/42/35	48/42/35	49.5/43/36	
PLIVEDOLUJAJA ÉBOK	Габариты (Ш×В×Г)	ММ	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×482	
плектропитание Потребляемая мощно асход воздуха (выс./ инешнее статическое уровень звукового да внутренний блок рубные соединения	Масса	КГ	21.4	25.5	26	33.8	37	
Toviculia coopialionia	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄			
груоные соединения	Диаметр дренажа	ММ			Ø19			
	3-ходовой клапан с четырьмя портами				KFV21A			
	Комплект трубной обвязки для KFV21A			KF	P21-K2 / KFP21-K	2A		
Опциональные	Дренажный поддон 3-ходового клапана		Встроен					
элементы	Подключение сетевого и центрального уп	равления	CE-FCUKZ-03					
	3-ходовой клапан, без трубной обвязки				FV3D20V1			
	2-ходовой клапан, без трубной обвязки				FV2D20V1			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 60°C, температура воздуха на входе 21°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный АС

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Центральный

пульт

Канальный тип

Напор 50 Па

MK

2-трубный

Инструкция

Компактный размер для удобного монтажа

Низкий уровень шума

Система фильтрации воздуха

STOCK

пульты

Индивидуальные

KJR-18B/E, опция

KJRP-86I/MFKS-E

FCU KIT, опция

(без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

Защитное покрытие дренажного поддона

АС-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе или на объекте

Внутренний блок			MK02A3UCBS	MK03A3UCBS	MK04A3UCBS	MK05A3UCBS	MK06A3UCBS		
	Производительность (выс./ сред./ низ.)	кВт	2.50/2.10/1.56	3.40/2.90/2.20	4.41/3.77/2.90	5.00/4.27/3.36	6.00/5.19/4.08		
Охлаждение	Расход воды	м³/ч	0.43/0.36/0.27	0.58/0.5/0.38	0.76/0.65/0.5	0.86/0.73/0.58	1.03/0.89/0.7		
	Перепад давлений по воде	кПа	27/24/19	24/19/14	24/21/16	30/23/18	38/28/25		
	Производительность (выс./ сред./ низ.)	кВт	4.10/3.20/2.20	5.67/4.52/3.17	7.35/5.89/4.19	8.60/6.93/5.03	9.98/8.19/6.01		
Нагрев	Расход воды	м³/ч	0.7/0.54/0.37	0.96/0.77/0.54	1.25/1.0/0.71	1.46/1.18/0.86	1.7/1.38/1.01		
	Перепад давлений по воде	кПа	22/20/16	20/16/12	20/17/13	24/19/15	31/23/20		
Электропитание		В, Гц, Ф	220,50,1						
Рабочий ток		А	0.22/0.17/0.14	0.29/0.23/0.17	0.37/0.29/0.26	0.44/0.30/0.25	0.52/0.39/0.35		
Потребляемая мощность (выс./ сред./ низ.)		Вт	48/38/31	64/50/38	81/64/57	97/65/55	114/85/76		
Расход воздуха (выс./сред./низ.)		м³/ч	340/257/172	510/385/257	680/516/344	850/643/429	1020/799/533		
Внешнее статическое	давление	Па	50						
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	40/32/24	42/34/31	44/37/33	46/40/33	47/42/33		
Внутренний блок	Габариты (Ш×В×Г)	MM	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482		
внутреннии олок	Macca	KF	12.3	14.7	17.6	17.6	18.8		
Трубные соединения	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄				
груоные соединения	Диаметр дренажа	ММ			Ø19				
	3-ходовой клапан с четырьмя портами				KFV21A				
	Комплект трубной обвязки для KFV21A			KF	FP21-K2 / KFP21-K	2A			
Опциональные	Дренажный поддон 3-ходового клапана		Встроен						
элементы	Подключение сетевого и центрального уп	равления	CE-FCUKZ-03						
	3-ходовой клапан, без трубной обвязки				FV3D20V1				
	2-ходовой клапан, без трубной обвязки				FV2D20V1				

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на входе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.).
2. Условия нагрева: температура воды на входе 60°C, температура воздуха на входе 21°C (сух. терм.).
3. Уровень шума измерялся в полубезэховой камере.

Внутренний блок			MK07A3UCBS	MK08A3UCBS	MK10A3UCBS	MK12A3UCBS	MK14A3UCBS		
	Производительность (выс./ сред./ низ.)	кВт	7.20/6.13/4.79	8.03/6.87/5.40	9.27/8.08/6.35	11.20/9.75/7.67	13.00/11.30/8.91		
Охлаждение	Расход воды	м³/ч	1.24/1.05/0.82	1.38/1.18/0.93	1.59/1.39/1.09	1.93/1.68/1.32	2.24/1.94/1.53		
	Перепад давлений по воде	кПа	30/23/20	40/31/25	40/31/23	40/32/24	50/39/31		
	Производительность (выс./ сред./ низ.)	кВт	12.00/9.66/7.01	13.60/10.98/8.02	16.00/13.16/9.61	19.20/15.78/11.53	22.16/18.25/13.39		
Нагрев	Расход воды	м³/ч	2.04/1.64/1.19	2.31/1.87/1.36	2.72/2.24/1.63	3.26/2.68/1.96	3.77/3.1/2.27		
	Перепад давлений по воде	кПа	24/19/16	32/25/20	32/25/19	32/26/20	40/32/25		
Электропитание		В, Гц, Ф	220,50,1						
Рабочий ток		А	0.60/0.50/0.36	0.77/0.55/0.38	0.93/0.64/0.57	1.10/0.79/0.58	1.32/1.18/1.00		
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	131/110/80	169/122/83	204/141/125	243/173/128	291/259/221		
Расход воздуха (выс./сред./низ.)		м³/ч	1190/896/598	1360/1031/687	1700/1284/856	2040/1544/1029	2380/1791/1194		
Внешнее статическое	давление	Па		*	50	*			
	вления (выс./сред./низ.)	дБ(А)	48/43/37	50/39/36	51/45/40	52/46/40	53/49/42.5		
D	Габариты (Ш×В×Г)	ММ	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×482		
Электропитание Рабочий ток Потребляемая мощно Расход воздуха (выс./ Внешнее статическое	Macca	КГ	21.4	25.5	26	33.8	35.3		
Toutille	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄				
груоные соединения	Диаметр дренажа	ММ			Ø19				
	3-ходовой клапан с четырьмя портами				KFV21A				
	Комплект трубной обвязки для KFV21A			KF	P21-K2 / KFP21-K	2A			
Опциональные	Дренажный поддон 3-ходового клапана		Встроен						
элементы	Подключение сетевого и центрального уг	равления	CE-FCUKZ-03						
	3-ходовой клапан, без трубной обвязки				FV3D20V1				
	2-ходовой клапан, без трубной обвязки				FV2D20V1				

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 60°C, температура воздуха на входе 21°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный АС

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Центральный

пульт

Канальный тип

Напор 50 Па

MKT4

4-трубный

Инструкция

Компактный размер для удобного монтажа

Низкий уровень шума

Система фильтрации воздуха

дренажного поддона

Защитное покрытие

STOCK

пульты

KJR-18B/E, опция

KJRP-86I/MFKS-E

FCU KIT, опция

(без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

Индивидуальные

АС-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе

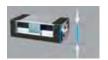
Внутренний блок			MKT4- 200FG50-CL	MKT4- 300FG50-CL	MKT4- 400FG50-CL	MKT4- 500FG50-CL	MKT4- 600FG50-CL	
	Производительность (выс./ сред./ низ.)	кВт	2.25/1.63/1.42	3.00/2.26/1.79	4.10/2.94/1.94	4.60/3.60/2.23	5.40/4.02/2.48	
Охлаждение	Расход воды	м³/ч	0.36/0.28/0.24	0.51/0.39/0.31	0.69/0.51/0.33	0.8/0.62/0.38	0.95/0.69/0.43	
	Перепад давлений по воде	кПа	15.57/9.48/7.19	17.77/10.21/6.4	23.5/12.88/5.61	28.86/18.14/7.1	39.1/22.51/8.69	
	Производительность (выс./ сред./ низ.)	кВт	2.40/1.82/1.57	3.80/2.78/2.21	4.70/3.51/2.24	5.00/4.03/2.49	6.40/5.07/3.18	
Нагрев	Расход воды	м³/ч	0.2/0.16/0.14	0.31/0.24/0.19	0.4/0.3/0.19	0.43/0.35/0.21	0.56/0.44/0.27	
	Перепад давлений по воде	кПа	26.8/17.39/13.44	13.16/8.57/5.76	27.99/17.23/7.87	28.62/19.76/8.57	48.39/31.07/13.81	
Электропитание		В, Гц, Ф	220,50,1					
Потребляемая мощность (выс./ сред./ низ.)		Вт	50/43/33	62/47/39	75/63/53	89/67/54	110/84/68	
Расход воздуха (выс./сред./низ.)		м³/ч	320/223/185	480/322/237	650/546/294	740/546/294	900/622/331	
Внешнее статическое давление		Па	50					
Уровень звукового давления (выс./сред./низ.)		дБ(А)	38/33/27	40.5/34.5/27.5	41.5/34.5/26	45/42/32.5	45/41/32	
	Габариты (Ш×В×Г)	MM	632×243×487	773×243×487	908×243×487	908×243×487	1003×243×487	
Внутренний блок	Macca	КГ	14	16	19	19	20.5	
T	Диаметр труб на вх./вых.	дюйм		холодная в	вода RC ³ / ₄ , горячая	я вода RC ³ / ₄	*	
Трубные соединения	Диаметр дренажа	ММ	Ø32					
Опциональные элементы	3-ходовой клапан с четырьмя портами	KQV22A						
	Комплект трубной обвязки для KQV22A		KQP21-L1					
	Дренажный поддон 3-ходового клапана		Встроен					
	Подключение сетевого и центрального управления		CE-FCUKZ-04					
	3-ходовой клапан, без трубной обвязки	FV3D20V1+FV3D20V1						
	2-ходовой клапан, без трубной обвязки		FV2D20V1+FV2D20V1					

^{1.} Выс. — высокие обороты вентилятора; сред. — средние обороты вентилятора; низ. — низкие обороты вентилятора.
2. Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.).
3. Условия нагрева: температура воды на входе 65°С, температура воздуха на входе 20°С (сух. терм.).
4. Уровень шума измерялся в полубезэховой камере.

Внутренний блок			MKT4- 700FG50-CL	MKT4- 800FG50-CL	MKT4- 1000FG50-CL	MKT4- 1200FG50-CL	MKT4- 1400FG50-CL		
	Производительность (выс./ сред./ низ.)	кВт	6.30/4.88/3.88	7.40/5.77/3.97	8.30/7.45/6.11	9.90/8.13/5.36	11.60/9.81/7.71		
Охлаждение	Расход воды	м³/ч	1.04/0.84/0.67	1.20/0.99/0.68	1.37/1.28/1.05	1.74/1.4/0.92	2/1.68/1.33		
	Перепад давлений по воде	кПа	19.24/12.97/0.67	24.86/17.53/8.41	31.72/28.36/19.86	30.97/20.94/9.45	49.64/36.87/24		
	Производительность (выс./ сред./ низ.)	кВт	6.30/5.45/4.52	9.60/8.16/5.81	10.00/9.55/8.29	10.50/9.09/6.30	12.70/11.43/9.44		
Нагрев	Расход воды	м³/ч	0.55/0.47/0.39	0.81/0.7/0.5	0.83/0.82/0.71	0.91/0.78/0.54	1.10/0.98/0.81		
	Перепад давлений по воде	кПа	42.49/32.24/23.22	41.56/32.85/18.07	44.95/44.35/34.59	26.17/19.92/10.52	40.73/33.64/24.06		
Электропитание		В, Гц, Ф	220,50,1						
Потребляемая мощность (выс./ сред./ низ.)		Вт	118/107/93	141/120/97	184/157/133	241/196/166	248/218/201		
Расход воздуха (выс./сред./низ.)		м³/ч	1120/829/611	1200/940/580	1450/1296/996	1800/1358/792	2100/1728/1254		
Внешнее статическое давление		Па	50						
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	45.5/38/32	44.5/41.5/34	47.5/44.5/39.5	48/44/35.5	49.5/44.5/36		
D	Габариты (Ш×В×Г)	MM	1178×243×487	1368×243×487	1368×243×487	1658×243×487	1898×243×487		
Внутренний блок	Macca	КГ	22.5	27.5	27.5	35.5			
T	Диаметр труб на вх./вых.	дюйм		холодная в	вода RC ³ / ₄ , горячая	вода RC ³ / ₄	*		
Трубные соединения	Диаметр дренажа	MM	Ø32						
Опциональные элементы	3-ходовой клапан с четырьмя портами		KQV22A						
	Комплект трубной обвязки для KQV22A	трубной обвязки для KQV22A		KQP21-L1					
	Дренажный поддон 3-ходового клапана	нажный поддон 3-ходового клапана		Встроен					
	Подключение сетевого и центрального управления		CE-FCUKZ-04						
	3-ходовой клапан, без трубной обвязки		FV3D20V1+FV3D20V1						
	2-ходовой клапан, без трубной обвязки		FV2D20V1+FV2D20V1						

^{1.} Выс. — высокие обороты вентилятора; сред. — средние обороты вентилятора; низ. — низкие обороты вентилятора.
2. Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.).
3. Условия нагрева: температура воды на входе 65°С, температура воздуха на входе 20°С (сух. терм.).
4. Уровень шума измерялся в полубезэховой камере.

Канальный тип


Напор 70/100 Па

MKT3H

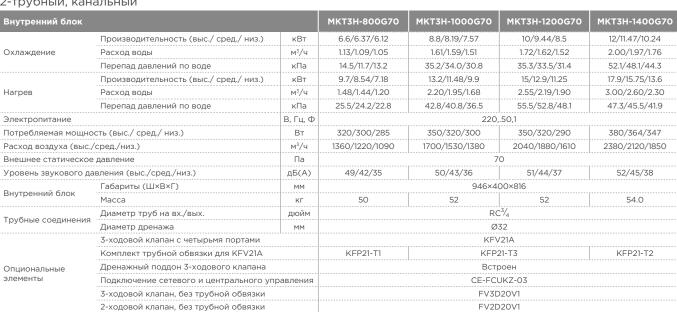
2-трубный

Компактный размер для удобного монтажа

Низкий уровень шума

Моющийся фильтр

Высокое статическое давление для больших помещений


АС-двигатель вентилятора фанкойла

Опционально доступно правое подключение фанкойла

Технические характеристики

2-трубный, канальный

^{1.} Выс. — высокие обороты вентилятора: сред. — средние обороты вентилятора: низ. — низкие обороты вентилятора

Центральный

Индивидуальные пульты

KJR-18B/E, опция

пульт

CCM-180A/BWS(A), опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

FCU KIT, опция

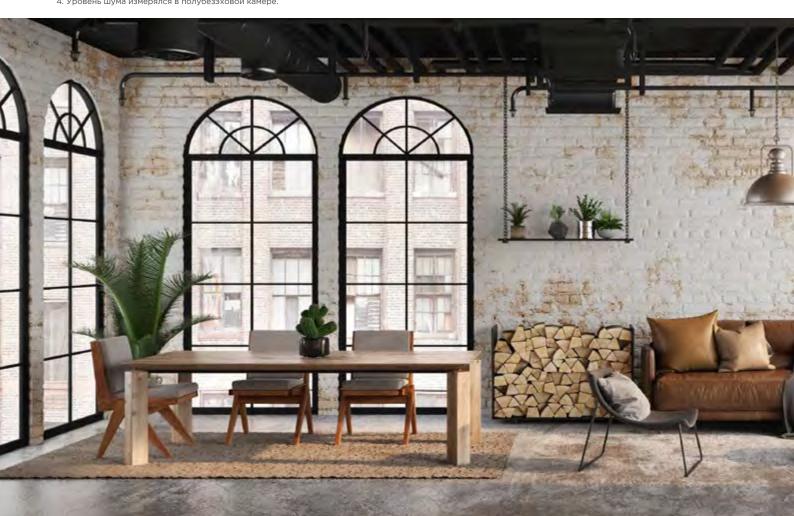
ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Энерго-сбережен

л. выс. — высомне обороты вентильного, сред. — средние обороты вентильного, — низкие обороты вентильного. 2. Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 3. Условия нагрева: температура воды на входе 50°C, температура воздуха на входе 20°C (сух. терм.).

^{4.} Уровень шума измерялся в полубезэховой камере



2-трубный, канальный

Внутренний блок			MKT3H-1600G100	MKT3H-1800G100	MKT3H-2200G100		
	Производительность (выс./ сред./ низ.)	кВт	14.1/13.03/11.87	15.8/14.6/13.46	19.9/18.58/17.24		
Охлаждение	Расход воды	м³/ч	2.40/2.24/2.00	2.70/2.50/2.30	3.16/2.90/2.59		
	Перепад давлений по воде	кПа	86.0/73.4/60.7	129.0/113.0/100.1	147.9/124.2/98.6		
Нагрев	Производительность (выс./ сред./ низ.)	кВт	21.2/18.23/15.69	23.8/20.94/17.85	30/26.7/22.5		
	Расход воды	м³/ч	3.60/3.00/2.60	4.00/3.40/3.00	5.00/4.50/3.80		
	Перепад давлений по воде	кПа	87.8/75.1/63.0	168.0/147.0/127.2	163.7/130.9/102.0		
Электропитание		В, Гц, Ф	220,50,1				
Потребляемая мощность (выс./ сред./ низ.)		Вт	550/520/500	800/680/620	950/860/760		
Расход воздуха (выс./сред./низ.)		м³/ч	2720/2450/2170	3060/2750/2450	3740/3360/2990		
Внешнее статическое давление		Па	100				
	вления (выс./сред./низ.)	дБ(А)	54/47/40	60/53/46	61/54/47		
D	Габариты (Ш×В×Г)	ММ	1290×400×809				
Внутренний блок	Macca	КГ	76.0				
Troviciu io coordiniouna	Диаметр труб на вх./вых.	дюйм	RC ³ / ₄				
Трубные соединения	Диаметр дренажа	ММ	Ø32				
Опциональные элементы	3-ходовой клапан с четырьмя портами		KFV21A				
	Комплект трубной обвязки для KFV21A		KFP21-T3				
	Дренажный поддон 3-ходового клапана		Встроен				
	Подключение сетевого и центрального управления		CE-FCUKZ-03				
	3-ходовой клапан, без трубной обвязки		_				
	2-ходовой клапан, без трубной обвязки			_			

- 1. Выс. высокие обороты вентилятора; сред. средние обороты вентилятора; низ. низкие обороты вентилятора.
 2. Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.).
 3. Условия нагрева: температура воды на входе 50°С, температура воздуха на входе 20°С (сух. терм.).
 4. Уровень шума измерялся в полубезэховой камере.

Настенный тип

Фанкойл 2-трубный АС

Центральный

MKG

2-трубный

пульты

R51/E, в комплекте

Индивидуальные

пульт

CCM-180A/BWS(A), опция

Панель D

KJR-29B/BK-E, опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Автоматическое качание жалюзи

Простота эксплуатации

Панель С

Встроенный трехходовой клапан

Современный дизайн

Низкий уровень шума

АС-двигатель вентилятора фанкойла

Технические характеристики

2-трубицій настонный

2-труоныи	1, настенныи					****			
Внутренний б.	лок		MKG-250C(D)	MKG-300C(D)	MKG-400C(D)	MKG-500C(D)	MKG-600C(D)		
	Производительность (выс./сред./низ.)	кВт	1.94/1.84/1.68	2.64/2.4/1.99	2.94/2.58/2.34	4.01/3.61/3.1	4.61/4.33/3.84		
Охлаждение	Расход воды	м³/ч	0.35/0.33/0.3	0.47/0.43/0.36	0.53/0.46/0.42	0.72/0.65/0.56	0.83/0.78/0.69		
Охлаждение Р П Нагрев Р П Электропитание Потребляемая мош Расход воздуха (ві Уровень звукового Внутренний Г блок р Трубные Д	Перепад давлений по воде	кПа	31.6/28.6/25.2	37.5/30/24	57.2/47.6/38.7	47.1/33.5/29.7	51/39.5/34		
	Производительность (выс./сред./низ.)	кВт	2.34/2.15/1.94	2.9/2.6/2.22	3.46/2.75/2.52	4.39/3.8/3.27	4.55/4.2/3.82		
Нагрев	Расход воды	м³/ч	0.43/0.39/0.35	0.53/0.47/0.4	0.63/0.5/0.46	0.80/0.69/0.6	0.83/0.76/0.69		
	Перепад давлений по воде	кПа	37.5/34.9/30	40.6/31.5/25	61.9/55.1/46.2	48.6/40.8/31.7	48/43/33		
Электропитани	е	В, Гц, Ф			220,50, 1				
Потребляемая і	мощность (выс./сред./низ.)	Вт	35/32/31	47/43/39	50/51/47	60/54/48	72/60/55		
Расход воздуха	і (выс./сред./низ.)	м³/ч	435/396/342	523/426/351	660/534/480	841/723/594	915/836/714		
Уровень звуков	вого давления (выс./сред./низ.)	дБ(А)	30/24/20	35/29/24	37/31/26	39/33/28	40/34/29		
Внутренний	Габариты (Ш×В×Г)	ММ		915×290×233		1072×3	315×233		
блок	Macca	ΚΓ	12	12	12	14.5	14.5		
Трубные	Диаметр труб на вх./вых. (вода)	дюйм			G ³ / ₄	***************************************	***************************************		
соединения	Диаметр дренажа	ММ			Ø20				
	3-ходовой клапан				встроен				
Опциональные элементы	Комплект трубной обвязки				встроен				
STORIGHT BI	Дренажный поддон 3-ходового клапана	3	встроен						

^{1.} Выс. — высокие обороты вентилятора; сред. — средние обороты вентилятора; низ. — низкие обороты вентилятора.

^{1.} Выс. — высоме обороты вентильнова, сред. — средние обороты вентильнова. 2. Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.). 3. Условия нагрева: температура воды на входе 45°С, температура воздуха на входе 20°С (сух. терм.). 4. Уровень шума измерялся в полубезэховой камере.

Серия Н1, в корпусе

MKH

2-трубный, 3-рядный

STOCK

Индивидуальные пульты

KJR-18B/E, опция

Фанкойл 2-трубный

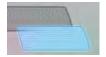
Центральный

пульт

CCM-180A/BWS(A), опция


KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

ССМ-30/ВКЕ-А, опция


FCU KIT, опция

Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

Возможность размещения пульта в специальной нише

АС-двигатель вентилятора фанкойла

2-трубный 3-ралный напольно-потолочный

D	-011		MKU1 150 DZ	MICHIA OFO DZ	MKU1 750 D7	MICHIE EGO DZ	MKH1-700-R3	MKU1 000 D7	
Внутренний бл	ток		MKH1-150-R3	MKH1-250-R3	MKH1-350-R3	MKH1-500-R3	MKH1-700-R3	MKH1-800-R3	
	Производительность (выс./сред./низ.)	кВт	1.58/1.17/1.04	2.51/1.92/1.32	3.75/3.10/2.40	4.59/3.75/2.88	5.29/4.43/3.27	6.22/5.50/4.36	
Охлаждение	Расход воды	м³/ч	0.27/0.20/0.18	0.43/0.33/0.23	0.64/0.53/0.41	0.79/0.64/0.49	0.91/0.76/0.56	1.07/0.94/0.75	
	Перепад давлений по воде	кПа	15.1/9.0/7.1	17.1/11.7/5.2	37.3/26.4/16.5	56.1/39.5/25.0	47.5/32.6/18.7	38.4/31.4/19.7	
	Производительность (выс./сред./низ.)	кВт	1.77/1.24/1.08	2.80/2.01/1.38	3.99/3.21/2.41	5.13/3.90/2.96	5.42/4.50/3.35	6.94/6.00/4.62	
Нагрев	Расход воды	м³/ч	0.30/0.21/0.19	0.48/0.34/0.24	0.68/0.55/0.41	0.88/0.67/0.51	0.93/0.77/0.57	1.19/1.03/0.79	
	Перепад давлений по воде	кПа	15.0/7.9/6.4	16.6/9.8/5.2	34.6/24.2/15.4	56.0/36.8/23.0	51.0/34.0/18.6	40.7/28.8/17.0	
Электропитание	9	В, Гц, Ф			220,	50, 1			
Потребляемая м	иощность (выс./сред./низ.)	Вт	35/17/14	47/26/14	51/32/19	91/54/34	124/98/68	118/93/65	
Расход воздуха	(выс./сред./низ.)	м³/ч	245/160/135	380/245/140	580/435/310	780/550/380	1050/750/490	1100/920/660	
Уровень звуков	ого давления (выс./сред./низ.)	дБ(А)	34/23/21	34/25/19	39/32/24	48/39/30	52/43/33	53/48/39	
Внутренний	Габариты (Ш×В×Г)	ММ	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×591×211	
блок	Macca	КГ	16.3	20	24	25.5	27.3	31.7	
Трубные	Диаметр труб на вх./вых. (вода)	дюйм			G	3/4			
соединения	Диаметр дренажа	ММ			Ø1	8.5			
	3-ходовой клапан с четырьмя портами				KF\	/21A			
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2	
	Дренажный поддон 3-ходового клапана	3			KFD-H-1-6			KFD-H-7	
Эпциональные	Подключение сетевого и центрального управления		CE-FCUKZ-03						
	3-ходовой клапан, без трубной обвязки		FV3D20V1						
	2-ходовой клапан, без трубной обвязки	l	FV2D20V1						
	Комплект монтажных опор		SB-1P						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Центральный

пульт

Серия Н1, в корпусе

MKH

2-трубный, 4-рядный

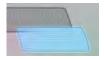
Индивидуальные пульты

KJR-18B/E, опция

CCM-180A/BWS(A), опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

ССМ-30/ВКЕ-А, опция


FCU KIT, опция

Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

Возможность размещения пульта в специальной нише

FV2D20V1 SB-1P

АС-двигатель вентилятора фанкойла

Технические характеристики

2-трубный, 4-рядный, напольно-потолочный

Внутренний бл	пок		MKH1-150-R4	MKH1-250-R4	MKH1-350-R4	MKH1-500-R4	MKH1-700-R4	MKH1-800-R4
	Производительность (выс./сред./низ.)	кВт	2.16/1.78/1.35	2.72/2.02/1.41	4.09/3.29/2.41	5.21/4.14/3.22	6.16/5.29/3.87	6.66/6.07/4.74
Охлаждение	Расход воды	м³/ч	0.37/0.31/0.23	0.47/0.35/0.24	0.70/0.56/0.41	0.89/0.71/0.55	1.06/0.91/0.66	1.14/1.04/0.81
	Перепад давлений по воде	кПа	31.9/23.2/14.1	23.9/14.0/7.5	40.1/26.4/15.3	59.9/40.4/26.0	36.8/26.7/14.8	52.3/44.5/28.2
	Производительность (выс./сред./низ.)	кВт	2.26/1.79/1.36	2.81/2.04/1.43	4.19/3.34/2.45	5.33/4.25/3.23	6.53/5.30/3.92	6.86/6.13/4.76
Нагрев	Расход воды	м³/ч	0.39/0.31/0.23	0.48/0.35/0.25	0.72/0.57/0.42	0.91/0.73/0.55	1.12/0.91/0.67	1.18/1.05/0.82
	Перепад давлений по воде	кПа	31.9/21.5/14.1	22.5/12.6/6.1	36.3/25.4/14.5	59.4/36.8/21.2	38.5/26.2/13.4	50.0/38.3/23.3
Электропитание	е	В, Гц, Ф			220,	50, 1	*	***************************************
Потребляемая м	иощность (выс./сред./низ.)	Вт	40/24/15	47/26/15	51/32/19	92/54/35	117/93/66	110/81/70
Расход воздуха	код воздуха (выс./сред./низ.) м³/ч		245/180/130	380/250/160	580/430/310	780/560/390	1050/800/520	1050/910/670
	вого давления (выс./сред./низ.)	дБ(А)	39/34/26	35/26/20	39/32/24	48/39/30	52/43/34	53/48/39
Внутренний	Габариты (Ш×В×Г)	ММ	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×591×211
блок	Macca	ΚΓ	16.7	20.8	25.4	26.3	28.5	34.0
Трубные	Диаметр труб на вх./вых. (вода)	дюйм		***************************************	G	3/4	*	*
соединения	Диаметр дренажа	ММ			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KF\	/21A		
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2
Г Опциональные <u>У</u>	Подключение сетевого и центрального управления		CE-FCUKZ-03					
	Дренажный поддон 3-ходового клапана	а		KFD-H-7				
	3-ходовой клапан, без трубной обвязки	1			FV3D)20V1		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

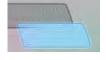
2-ходовой клапан, без трубной обвязки

Серия Н1, в корпусе

MKH

4-трубный, 4-рядный

Инструкция


Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

STOCK

пульты

KJR-18B/E, опция

KJRP-86I/MFKS-E

FCU KIT, опция

(без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

Индивидуальные

Система фильтрации воздуха

Возможность размещения пульта в специальной нише

Фанкойл 4-трубный

Центральный

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

пульт

АС-двигатель вентилятора фанкойла

Технические характеристики

4-трубный, 4-рядный, напольно-потолочный

ий б	лок		MKH1-150F-R4	MKH1-250F-R4	MKH1-350F-R4	MKH1-500F-R4	MKH1-700F-R4	MKH1-800F-R4
	Производительность (выс./сред./низ.)	кВт	1.87/1.54/1.10	2.58/1.83/1.12	3.99/3.27/2.29	4.92/3.95/3.12	5.84/5.10/3.65	6.18/5.65/4.44
1e	Расход воды	м³/ч	0.321/0.26/0.19	0.44/0.31/0.19	0.68/0.56/0.39	0.84/0.68/0.54	1.00/0.87/0.63	1.06/0.97/0.76
	Перепад давлений по воде	кПа	26.4/18.0/11.5	19.1/10.7/4.5	46.5/32.2/17.8	69.3/46.6/31.2	57.6/44.3/24.9	40.8/35.3/22.8
	Производительность (выс./сред./низ.)	кВт	1.62/1.35/1.10	2.19/1.52/1.06	2.88/2.44/1.95	3.55/2.97/2.44	4.25/3.74/2.91	5.90/5.8/5.05
	Daava = ===:	3 /	014/010/010	0.10/0.17/0.00	0.05 /0.01 /0.17	0.71 /0.00 /0.01	0.77/0.70/0.05	0.51/0.50/0.44

внутреннии ол	TOK		MKHI-150F-R4 MKHI-250F-R4 MKHI-350F-R4 MKHI-500F-R4 MKHI-700F-R4 MKHI-800						
	Производительность (выс./сред./низ.)	кВт	1.87/1.54/1.10	2.58/1.83/1.12	3.99/3.27/2.29	4.92/3.95/3.12	5.84/5.10/3.65	6.18/5.65/4.44	
Охлаждение	Расход воды	м³/ч	0.321/0.26/0.19	0.44/0.31/0.19	0.68/0.56/0.39	0.84/0.68/0.54	1.00/0.87/0.63	1.06/0.97/0.76	
	Перепад давлений по воде	кПа	26.4/18.0/11.5	19.1/10.7/4.5	46.5/32.2/17.8	69.3/46.6/31.2	57.6/44.3/24.9	40.8/35.3/22.8	
	Производительность (выс./сред./низ.)	кВт	1.62/1.35/1.10	2.19/1.52/1.06	2.88/2.44/1.95	3.55/2.97/2.44	4.25/3.74/2.91	5.90/5.8/5.05	
Нагрев	Расход воды	м³/ч	0.14/0.12/0.10	0.19/0.13/0.09	0.25/0.21/0.17	0.31/0.26/0.21	0.37/0.32/0.25	0.51/0.50/0.44	
	Перепад давлений по воде	кПа	15.0/10.6/7.7	28.6/15.1/8.5	56.7/42.3/28.5	80.0/59.8/41.8	123.45/102.03/64.74	54.8/53.1/43.3	
Электропитание	9	В, Гц, Ф			220,	50, 1			
Потребляемая м	иощность (выс./сред./низ.)	Вт	40/24/15	47/26/15	51/32/19	92/54/35	117/93/66	110/81/70	
Расход воздуха	(выс./сред./низ.)	м³/ч	245/180/130	380/250/160	580/430/310	780/560/390	1050/800/520	1050/910/670	
Уровень звуков	ого давления (выс./сред./низ.)	дБ(А)	39/34/26	35/26/20	39/32/24	48/39/30	52/43/34	52/48/39	
Внутренний	Габариты (Ш×В×Г)	ММ	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×591×211	
блок	Macca	КГ	17.2	21.3	25.9	26.8	29.0	34.5	
Трубные	Диаметр труб на вх./вых. (вода)	дюйм		хол	одная вода $\mathrm{RC}^3\!/_{\!\!4}$; горячая вода:	$RC\frac{1}{2}$		
соединения	Диаметр дренажа	ММ			Ø1	8.5			
	3-ходовой клапан с четырьмя портами				KQ\	/21A			
	Комплект трубной обвязки для KQV21A	١			KFP21-H/FL1			KFP21-H/FL2	
Опциональные	Подключение сетевого и центрального управления				CE-FC	JKZ-04			
элементы	Дренажный поддон 3-ходового клапан	а			KFD-H-1-6			KFD-H-7	
	3-ходовой клапан, без трубной обвязки	1		F\	/3D20V1+FV3D15	5V1		_	
	2-ходовой клапан, без трубной обвязки	1		_					
	Комплект монтажных опор				SB	-1P			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 65°C, температура воды на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Центральный

пульт

Серия Н2, в корпусе

MKH

2-трубный, 3-рядный

Индивидуальные пульты

KJR-18B/E, опция

CCM-180A/BWS(A), опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

FCU KIT, опция

ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Инструкция

Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

Возможность размещения пульта в специальной нише

АС-двигатель вентилятора фанкойла

2-трубный, 3-рядный, напольно-потолочный

Внутренний б	ілок		MKH2-150-R3	MKH2-250-R3	MKH2-350-R3	MKH2-500-R3	MKH2-700-R3	MKH2-800-R3
	Производительность (выс./сред./низ.)	кВт	1.65/1.22/1.09	2.65/2.02/1.40	3.85/3.19/2.46	4.65/3.80/2.92	6.00/5.03/3.71	7.35/6.51/5.15
Охлаждение	Расход воды	м³/ч	0.28/0.21/0.19	0.45/0.35/0.24	0.66/0.55/0.42	0.80/0.65/0.50	1.03/0.86/0.64	1.26/1.12/0.88
	Перепад давлений по воде	кПа	15.75/9.33/7.37	18.03/11.18/5.48	38.23/27.11/16.96	56.85/40.02/25.31	53.79/36.96/21.16	45.43/37.06/23.29
	Производительность (выс./сред./низ.)	кВт	1.85/1.29/1.13	3.05/2.24/1.52	4.10/3.30/2.48	5.20/3.95/3.00	6.15/5.10/3.80	8.20/7.09/5.46
Нагрев	Расход воды	м³/ч	0.32/0.22/0.19	0.52/0.38/0.26	0.71/0.57/0.43	0.89/0.68/0.52	1.05/0.88/0.65	1.41/1.22/0.94
		_	15 17 /0 00 /0 04	17 50 /10 00 /5 47	75 50 /04 07 /14 01	EC CO /77 71 /07 0E	E7 0E /70 E7 /0110	44.00/74.00/10.00

	Производительность (выс./сред./низ.)	кВт	1.65/1.22/1.09	2.65/2.02/1.40	3.85/3.19/2.46	4.65/3.80/2.92	6.00/5.03/3.71	7.35/6.51/5.15	
Охлаждение	Расход воды	м³/ч	0.28/0.21/0.19	0.45/0.35/0.24	0.66/0.55/0.42	0.80/0.65/0.50	1.03/0.86/0.64	1.26/1.12/0.88	
	Перепад давлений по воде	кПа	15.75/9.33/7.37	18.03/11.18/5.48	38.23/27.11/16.96	56.85/40.02/25.31	53.79/36.96/21.16	45.43/37.06/23.29	
	Производительность (выс./сред./низ.)	кВт	1.85/1.29/1.13	3.05/2.24/1.52	4.10/3.30/2.48	5.20/3.95/3.00	6.15/5.10/3.80	8.20/7.09/5.46	
Нагрев	Расход воды	м³/ч	0.32/0.22/0.19	0.52/0.38/0.26	0.71/0.57/0.43	0.89/0.68/0.52	1.05/0.88/0.65	1.41/1.22/0.94	
	Перепад давлений по воде	кПа	15.13/8.22/6.64	17.56/10.28/5.43	35.52/24.83/14.91	56.68/37.31/23.25	57.85/38.53/21.10	44.60/34.09/19.98	
Электропитани	e	В, Гц, Ф			220,	50, 1			
Потребляемая в	чощность (выс./сред./низ.)	Вт	35/17/14	47/26/14	51/32/19	91/54/34	123/98/68	123/109/83	
Расход воздуха	(выс./сред./низ.)	м³/ч	255/165/142	400/273/180	595/447/319	790/560/392	1190/855/555	1300/1088/782	
Уровень звуков	вого давления (выс./сред./низ.)	дБ(А)	35/24/21	34/24/18	39/32/23	48/39/31	50/43/33	51/46/36	
Внутренний	Габариты (Ш×В×Г)	ММ	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591×200	
блок	Macca	КГ	16.3	20	24	25.5	27.3	31.7	
Трубные	Диаметр труб на вх./вых. (вода)	дюйм			G	³ / ₄			
соединения	Диаметр дренажа	ММ			Ø1	8.5			
	3-ходовой клапан с четырьмя портами				KF\	/21A			
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2	
Опциональные	Подключение сетевого и центрального управления				CE-FC	UKZ-03			
элементы	Дренажный поддон 3-ходового клапана	а			KFD-H-1-6			KFD-H-7	
	3-ходовой клапан, без трубной обвязки	1	FV3D20V1						
	2-ходовой клапан, без трубной обвязки	1	FV2D20V1						
	Комплект монтажных опор				SE	-1P			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Центральный

пульт

Серия Н2, в корпусе

MKH

2-трубный, 4-рядный

Индивидуальные пульты

KJR-18B/E, опция

CCM-180A/BWS(A), опция

FCU KIT, опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Инструкция

Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

Возможность размещения пульта в специальной нише

SB-1P

АС-двигатель вентилятора фанкойла

Технические характеристики

2-трубный, 4-рядный, напольно-потолочный

Внутренний бл	пок		MKH2-150-R4	MKH2-250-R4	MKH2-350-R4	MKH2-500-R4	MKH2-700-R4	MKH2-800-R4	
	Производительность (выс./сред./низ.)	кВт	2.25/1.85/1.40	3.05/2.26/1.58	4.20/3.38/2.48	5.35/4.25/3.31	6.75/5.80/4.24	8.25/7.52/5.87	
Охлаждение	Расход воды	м³/ч	0.39/0.32/0.24	0.52/0.39/0.27	0.72/0.58/0.43	0.92/0.73/0.57	1.16/1.00/0.73	1.41/1.29/1.01	
	Перепад давлений по воде	кПа	33.19/22.37/14.64	26.71/15.66/8.42	41.15/27.07/15.71	61.48/41.44/26.62	40.26/29.20/16.15	64.72/55.03/34.88	
	Производительность (выс./сред./низ.)	кВт	2.35/1.87/1.42	3.15/2.28/1.60	4.30/3.43/2.52	5.70/4.36/3.31	7.15/5.81/4.30	8.50/7.60/5.90	
Нагрев	Расход воды	м³/ч	0.40/0.32/0.24	0.54/0.39/0.28	0.74/0.59/0.43	0.98/0.75/0.57	1.23/1.00/0.74	1.46/1.30/1.02	
	Перепад давлений по воде	кПа	33.19/22.37/14.64	23.31/12.57/6.11	37.20/24.50/13.75	60.89/37.73/21.79	42.16/28.68/14.66	61.96/47.46/28.84	
Электропитание	e	В, Гц, Ф		*	220,	50, 1			
Потребляемая м	иощность (выс./сред./низ.)	Вт	40/24/15	47/26/14	51/32/19	91/54/35	110/89/64	118/104/82	
Расход воздуха	(выс./сред./низ.)	м³/ч	4 255/192/139 425/284/184 595/450/319 800/574/404 1150/885/591 1300				1300/1132/836		
Уровень звуков	ого давления (выс./сред./низ.)	дБ(А)	53/47/39	47/38/32	52/45/37	59/51/43	62/56/46	63/58/50	
Внутренний	Габариты (Ш×В×Г)	ММ	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591×200	
блок	Macca	КГ	16.7	20.8	25.4	26.3	28.5	34	
Грубные	Диаметр труб на вх./вых. (вода)	дюйм			G	3/4			
соединения	Диаметр дренажа	ММ			Ø1	8.5			
	3-ходовой клапан с четырьмя портами	-4			KF\	/21A			
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2	
	Подключение сетевого и центрального управления		CE-FCUKZ-03						
элементы	Дренажный поддон 3-ходового клапана	3	KFD-H-1-6						
	3-ходовой клапан, без трубной обвязки	1	FV3D20V1						
	2-ходовой клапан, без трубной обвязки	 I			FV2D)20V1			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный АС

Центральный

пульт

Серия Н2, в корпусе

MKH

4-трубный, 4-рядный

Индивидуальные пульты

KJR-18B/E, опция

CCM-180A/BWS(A), опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

ССМ-30/ВКЕ-А, опция

Инструкция

FCU KIT, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

Возможность размещения пульта в специальной нише

АС-двигатель вентилятора фанкойла

4-трубный, 4-рялный, напольно-потолочный

Внутренний бл	лок		MKH2-150F-R4	MKH2-250F-R4	MKH2-350F-R4	MKH2-500F-R4	MKH2-700F-R4	MKH2-800F-R4
	Производительность (выс./сред./низ.)	кВт	1.95/1.60/1.15	2.89/2.05/1.25	4.09/3.35/2.35	5.05/4.05/3.20	6.40/5.59/4.00	7.65/7.00/5.50
Охлаждение	Расход воды	м³/ч	0.33/0.28/0.20	0.50/0.35/0.21	0.70/0.57/0.40	0.87/0.69/0.55	1.10/0.96/0.69	1.31/1.20/0.94
	Перепад давлений по воде	кПа	27.47/19.63/12.54	21.38/11.95/4.99	47.7/33.04/18.22	71.09/47.81/31.95	63.05/48.47/27.23	50.47/43.72/28.23
	Производительность (выс./сред./низ.)	кВт	1.69/1.40/1.15	2.45/1.70/1.19	2.95/2.50/2.00	3.46/3.05/2.50	4.65/4.09/3.19	7.30/7.19/6.25
Нагрев	Расход воды	м³/ч	0.14/0.12/0.10	0.21/0.15/0.10	0.25/0.21/0.17	0.31/0.26/0.21	0.40/0.35/0.27	0.63/0.62/0.54
	Перепад давлений по воде	кПа	15.60/11.01/8.04	31.95/16.83/9.52	58.17/43.35/29.20	82.01/61.29/42.87	135.21/111.75/70.91	67.86/65.78/53.61
Электропитание	e	В, Гц, Ф			220,	50, 1		
Потребляемая м	чощность (выс./сред./низ.)	Вт	40/24/15	47/26/14	51/32/19	91/54/35	110/89/64	118/104/82
Расход воздуха	(выс./сред./низ.)	м³/ч	255/192/139	425/284/184	595/450/319	800/574/404	1150/885/591	1300/1132/836
Уровень звуков	вого давления (выс./сред./низ.)	дБ(А)	53/47/39	47/38/32	52/45/37	59/51/43	62/56/46	63/58/50
Внутренний	Габариты (Ш×В×Г)	ММ	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591м200
блок	Macca	КГ	17.2	21.3	25.9	26.8	29.0	34.5
Трубные	Диаметр труб на вх./вых. (вода)	дюйм		холо	одная вода ${ m RC}^{3}\!/_{\!\!4}$; горячая вода:	$RC\frac{1}{2}$	
соединения	Диаметр дренажа	MM			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KQ\	/21A		
	Комплект трубной обвязки для KQV21A				KQP21-H/FL1			KQP21-H/FL2
Опциональные	Подключение сетевого и центрального управления				CE-FC	JKZ-04		
элементы	Дренажный поддон 3-ходового клапана	a			KFD-H-1-6			KFD-H-7
	3-ходовой клапан, без трубной обвязки	ı		F۷	/3D20V1+FV3D15	5V1		_
	2-ходовой клапан, без трубной обвязки		FV2D20V1+FV2D15V1					
	Комплект монтажных опор		SB-1P					

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 65°C, температура воды на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

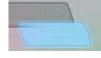
Серия Н3, без корпуса

MKH

2-трубный, 3-рядный

Инструкция

Компактный размер



Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

Технические характеристики

2-трубныи	, 3-рядный, напольно-потол	очный							
Внутренний бл	п ок		MKH3-150-R3	MKH3-250-R3	MKH3-350-R3	MKH3-500-R3	MKH3-700-R3	MKH3-800-R3	
	Производительность (выс./сред./низ.)	кВт	1.65/1.22/1.09	2.65/2.02/1.40	3.85/3.19/2.46	4.65/3.80/2.92	6.00/5.03/3.71	7.35/6.51/5.15	
Охлаждение	Расход воды	м³/ч	0.28/0.21/0.19	0.45/0.35/0.24	0.66/0.55/0.42	0.80/0.65/0.50	1.03/0.86/0.64	1.26/1.12/0.88	
	Перепад давлений по воде	кПа	15.75/9.33/7.37	18.03/11.18/5.48	38.23/27.11/16.96	56.85/40.02/25.31	53.79/36.96/21.16	45.43/37.06/23.29	
	Производительность (выс./сред./низ.)	кВт	1.85/1.29/1.13	3.05/2.24/1.52	4.10/3.30/2.48	5.20/3.95/3.00	6.15/5.10/3.80	8.20/7.09/5.46	
Нагрев	Расход воды	м³/ч	0.32/0.22/0.19	0.52/0.38/0.26	0.71/0.57/0.43	0.89/0.68/0.52	1.05/0.88/0.65	1.41/1.22/0.94	
	Перепад давлений по воде	кПа	15.13/8.22/6.64	17.56/10.28/5.43	35.52/24.83/14.91	56.68/37.31/23.25	57.85/38.53/21.1	44.60/34.09/19.98	
Электропитание	9	В, Гц, Ф		***************************************	220,	50, 1	*	***************************************	
Потребляемая м	иощность (выс./сред./низ.)	Вт	35/17/14	47/26/14	51/32/19	91/54/34	123/98/68	123/109/83	
Расход воздуха	(выс./сред./низ.)	м³/ч	/ч 255/165/142 400/273/180 595/447/319 790/560/392 1190/855/555 130				1300/1088/782		
Уровень звуков	/ровень звукового давления (выс./сред./низ.) дБ(А			34/24/18	39/32/23	48/39/31	50/43/33	51/46/36	
Внутренний	Габариты (Ш×В×Г)	ММ	607×455×200	837×455×200	1057×455×200	1057×455×200	1177×455×200	1177×500×200	
блок	Macca	KΓ	11.6	13.9	17.3	17.9	20.5	24.0	
Трубные	Диаметр труб на вх./вых. (вода)	дюйм		*	G	3/4		*	
соединения	Диаметр дренажа	ММ			Ø1	8.5			
	3-ходовой клапан с четырьмя портами	*			KF\	/21A			
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2	
Опциональные	Подключение сетевого и центрального управления				CE-FC	UKZ-03		***************************************	
элементы	Дренажный поддон 3-ходового клапана		KFD-H-1-6						
	3-ходовой клапан, без трубной обвязки		FV3D20V1						
	2-ходовой клапан, без трубной обвязки		FV2D20V1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

STOCK

Индивидуальные пульты

KJR-18B/E, опция

Фанкойл 2-трубный

Центральный

пульт

CCM-180A/BWS(A), опция

FCU KIT, опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

ССМ-30/ВКЕ-А, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

Смена стороны подключения труб на заводе или на объекте

Левое подключение

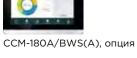
Фанкойл 2-трубный АС

Центральный

пульт

Серия Н3, без корпуса **MKH**

2-трубный, 4-рядный



Инструкция

Индивидуальные пульты

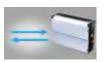
KJR-18B/E, опция

KJRP-86I/MFKS-E (без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

ССМ-30/ВКЕ-А, опция

FCU KIT, опция

Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется



Компактный размер

Низкий уровень шума

Удобное размещение на полу, стене или потолке

Система фильтрации воздуха

АС-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе или на объекте

2-трубный, 4-рядный, напольно-потолочный

Внутренний бл	лок		MKH3-150-R4	MKH3-250-R4	MKH3-350-R4	MKH3-500-R4	MKH3-700-R4	MKH3-800-R4	
	Производительность (выс./сред./низ.)	кВт	2.25/1.85/1.40	3.05/2.26/1.58	4.20/3.38/2.48	5.35/4.25/3.31	6.75/5.80/4.24	8.25/7.52/5.87	
Охлаждение	Расход воды	м³/ч	0.39/0.32/0.24	0.52/0.39/0.27	0.72/0.58/0.43	0.92/0.73/0.57	1.16/1.00/0.73	1.41/1.29/1.01	
	Перепад давлений по воде	кПа	33.19/22.37/14.64	26.71/15.66/8.42	41.15/27.07/15.71	61.48/41.44/26.62	40.26/29.20/16.15	64.72/55.03/34.88	
	Производительность (выс./сред./низ.)	кВт	2.35/1.87/1.42	3.15/2.28/1.60	4.30/3.43/2.52	5.70/4.36/3.31	7.15/5.81/4.30	8.50/7.60/5.90	
Нагрев	Расход воды	м³/ч	0.40/0.32/0.24	0.54/0.39/0.28	0.74/0.59/0.43	0.98/0.75/0.57	1.23/1.00/0.74	1.46/1.30/1.02	
	Перепад давлений по воде	кПа	33.19/22.37/14.64	23.31/12.57/6.11	37.20/24.50/13.75	60.89/37.73/21.79	42.16/28.68/14.66	61.96/47.46/28.84	
Электропитани	е	В, Гц, Ф		***************************************	220,	50, 1	***************************************	***************************************	
Потребляемая м	иощность (выс./сред./низ.)	Вт	40/24/15	47/26/14	51/32/19	91/54/35	110/89/64	118/104/82	
Расход воздуха	асход воздуха (выс./сред./низ.) м ³ /ч			425/284/184	595/450/319	800/574/404	1150/885/591	1300/1132/836	
Уровень звукового давления (выс./сред./низ.)			42/35/27	34/25/19	40/35/31	47/40/31	50/44/33	50/45/37	
Внутренний	Габариты (Ш×В×Г)	ММ	607×455×200	837×455×200	1057×455×200	1057×455×200	1177×455×200	1177×500×200	
блок	Macca	КГ	12.0	14.8	18.2	18.8	21.7	25.2	
Грубные	Диаметр труб на вх./вых. (вода)	дюйм			G	3/4			
соединения	Диаметр дренажа	ММ			Ø1	8.5			
	3-ходовой клапан с четырьмя портами				KF\	/21A			
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2	
Опциональные ,	Подключение сетевого и центрального управления				CE-FCI	JKZ-03			
	Дренажный поддон 3-ходового клапана	∃	KFD-H-1-6						
	3-ходовой клапан, без трубной обвязки	1	FV3D20V1						
	2-ходовой клапан, без трубной обвязки	1	FV2D20V1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Серия НЗ, без корпуса

MKH

4-трубный, 4-рядный

Инструкция

Компактный размер

Удобное размещение на полу, стене или потолке

STOCK

пульты

Индивидуальные

KJR-18B/E, опция

KJRP-86I/MFKS-E

FCU KIT, опция

(без Modbus), опция KJRP-86A/BMFNKD-E (c Modbus), опция

Система фильтрации воздуха

АС-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе или на объекте

Технические характеристики

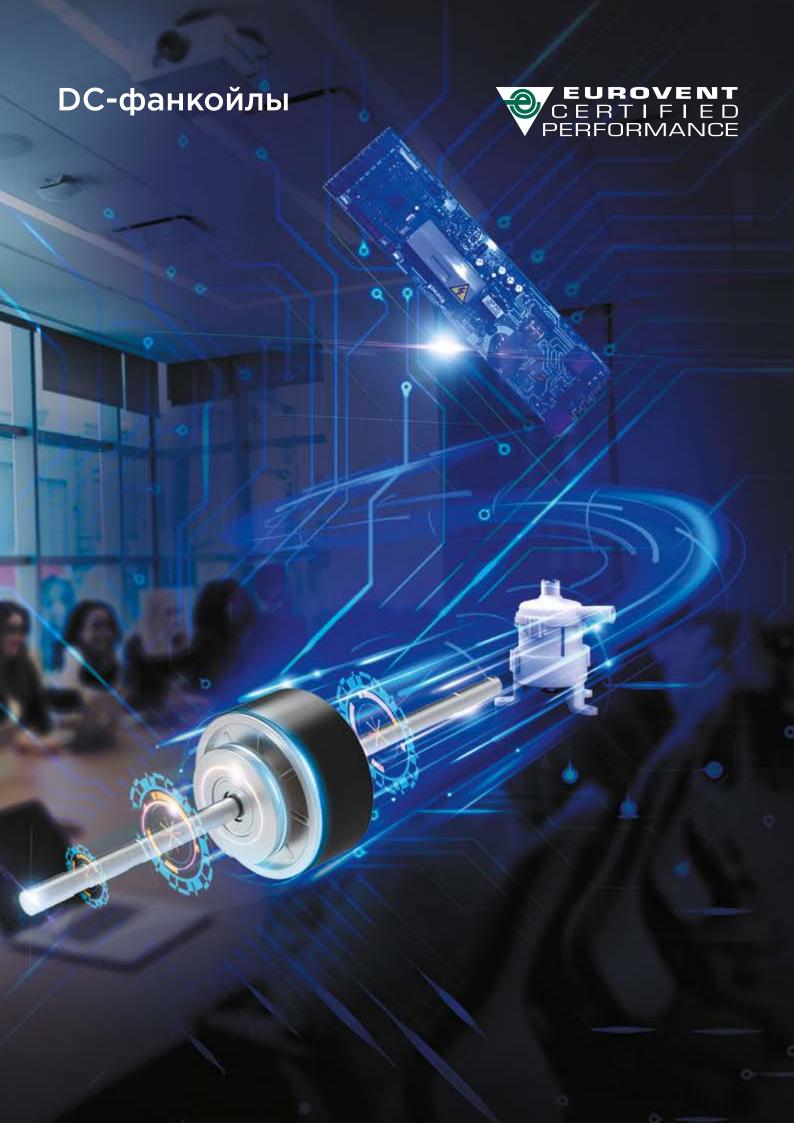
4-трубный 4-ралный напольно-потолочный

Фанкойл 4-трубный

Центральный

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция


Подключение к центральному пульту CCM30/BKE-A и к протоколу ModBus осуществляется через модуль подключения FCU KIT, который поставляется

пульт

Внутренний бл	юк		MKH3-150F-R4	MKH3-250F-R4	MKH3-350F-R4	MKH3-500F-R4	MKH3-700F-R4	MKH3-800F-R4
	Производительность (выс./сред./низ.)	кВт	1.95/1.60/1.15	2.89/2.05/1.25	4.09/3.35/2.35	5.05/4.05/3.20	6.40/5.59/4.00	7.65/7.00/5.50
Охлаждение	Расход воды	м³/ч	0.33/0.28/0.20	0.50/0.35/0.21	0.70/0.57/0.40	0.87/0.69/0.55	1.10/0.96/0.69	1.31/1.20/0.94
	Перепад давлений по воде	кПа	27.47/19.63/12.54	21.38/11.95/4.99	47.7/33.04/18.22	71.09/47.81/31.95	63.05/48.47/27.23	50.47/43.72/28.23
	Производительность (выс./сред./низ.)	кВт	1.69/1.40/1.15	2.45/1.70/1.19	2.95/2.50/2.00	3.46/3.05/2.50	4.65/4.09/3.19	7.30/7.19/6.25
Нагрев	Расход воды	м³/ч	0.14/0.12/0.10	0.21/0.15/0.10	0.25/0.21/0.17	0.31/0.26/0.21	0.40/0.35/0.27	0.63/0.62/0.54
	Перепад давлений по воде	кПа	15.60/11.01/8.04	31.95/16.83/9.52	58.17/43.35/29.20	82.01/61.29/42.87	135.21/111.75/70.91	67.86/65.78/53.61
Электропитание)	В, Гц, Ф			220,	50, 1		
Потребляемая м	10щность (выс./сред./низ.)	Вт	40/24/15	47/26/14	51/32/19	91/54/35	110/89/64	118/104/82
Расход воздуха	асход воздуха (выс./сред./низ.) м³/ч		255/192/139	425/284/184	595/450/319	800/574/404	1150/885/591	1300/1132/836
Уровень звуков	ого давления (выс./сред./низ.)	дБ(А)	53/47/39	47/38/32	52/45/37	59/51/43	62/56/46	63/58/50
Внутренний	Габариты (Ш×В×Г)	MM	607×455×200	837×455×200	1057×455×200	1057×455×200	1177×455×200	1177×550×200
блок	Macca	KΓ	12.5	15.3	18.7	19.3	22.2	25.7
Трубные	Диаметр труб на вх./вых. (вода)	дюйм		хол	одная вода RC ³ / ₄	; горячая вода: І	RC ¹ / ₂	
соединения	Диаметр дренажа	MM			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KQ\	/21A		
	Комплект трубной обвязки для KQV21A				KQP21-H/FL1			KQP21-H/FL2
Эпциональные Г	Подключение сетевого и центрального управления		CE-FCUKZ-04					
	3-ходовой клапан, без трубной обвязки			_				
	2-ходовой клапан, без трубной обвязки			F۱	/2D20V1+FV2D15	5V1		_

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 55°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Модельный ряд DC-фанкойлов

Кассетный тип

однопоточный

МКС-V_R-В (2-трубный)

Модель	300	400	600
Мощность, кВт	2.64	3.44	5.09

Кассетный тип

компактный четырехпоточный 600×600

MKD-V	(2-T	рубный) —	склад
-------	------	--------	-----	-------

Модель	300	400	500
Мощность, кВт	2.98	3.96	4.20

МКD-V_FA (4-трубный)

Модель	300	400	500
Мощность, кВт	2.16	2.78	3.10

Кассетный тип

четырехпоточный

MKA-V R	(2-Tp)	vбный`	— склад
---------	--------	--------	---------------------------

Модель	600	750	850	950	1200
Мощность, кВт	5.93	6.12	7.52	7.84	7.87

МКА-V_FA (4-трубный)

Модель	600	750	850	950	1200	1500
Мощность, кВт	4.96	5.18	5.13	5.30	7.98	8.04

Кассетный тип

четырехпоточный

МКА-V_СА (2-трубный)

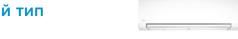
Модель	600	700	800	1000	1200
Мощность, кВт	5.50	6.50	7.50	8.50	10.5

MKA-V_F-CA (4-трубный)

Модель	600	700	800	1000	1200
Мощность, кВт	4.70	5.00	5.50	9.01	10.03

Канальный тип

Статический напор 12/30/50 Па


4-папный

MKT3-V-CL (2-трубный)									3-ря,	
Модель	200	300	400	500	600	700	800	1000	1200	1400
Мощность, кВт	2.45	3.35	4.25	4.55	5.85	6.5	8.02	9.05	10.08	11.11

МКТ4-V F-CL (4-трубный)

									. 107.1	٦
Модель	200	300	400	500	600	700	800	1000	1200	1400
Мощность, кВт	2.70	3.50	4.30	4.90	5.80	6.70	7.60	8.20	9.70	12.20

Настенный тип

МКG-V_С (2-трубный) — склад

Модель	200	250	300	400	500	600
Мощность, кВт	2.30	2.70	2.91	3.81	4.47	4.87

Напольно-потолочный тип

Серия Н1, в корпусе

3-рядный

МКН1-V_-R3 (2-трубный)

Модель	150	250	350	500	700	800
Мощность, кВт	1.44	2.23	3.41	4.25	4.94	6.21
MKH1-VR4 (2-трубн	ый)			4-	рядный

МКН1-V_-R4 (2-трубный)

Модель	150	250	350	500	700	800
Мощность, кВт	1.87	2.55	3.80	4.73	5.60	7.30

MKH1-V_F-R4	(4-трус	ныи)			4-	рядныи
Модель	150	250	350	500	700	800
Мощность, кВт	1.63	2.41	3.70	4.49	5.34	6.77

Напольно-потолочный тип

Серия Н2, в корпусе

МКН2-VR3 (2-трубный) 3-рядный							
Модель	150	250	350	500	700	800	
Мощность, кВт	1.50	2.35	3.50	4.30	5.60	7.35	
МКН2-VR4 (2-трубный) 4-рядный							
Модель	150	250	350	500	700	800	
Мощность, кВт	1.95	2.85	3.90	4.85	6.35	8.25	
MKH2-V_F-R4	(4-тру	бный)			4-	рядный	
Модель	150	250	350	500	700	800	

Напольно-потолочный тип

Серия НЗ, без корпуса

Мощность, кВт 1.70

4-рялный

МКН3-V -R3 (2-трубный)

МКП3-VК3 (2-труоный) 3-рядні						рядный
Модель	150	250	350	500	700	800
Мощность, кВт	1.50	2.35	3.50	4.30	5.60	7.35

МКН3-V -R4 (2-трубный)

Модель	150	250	350	500	700	800	
Мощность, кВт	1.95	2.85	3.90	4.85	6.35	8.25	

1KH3-V_F-R4	(4-труб	бный)			4-	рядный
Модель	150	250	350	500	700	800
Мощность, кВт	1.70	2.70	3.80	4.60	6.05	7.65

Настенный тип

МКG-V_D (2-трубный) — склад

Модель	250	300	400	500	600
Мощность, кВт	2.70	2.91	3.81	4.47	4.87

Фанкойл 2-трубный

Центральный

пульт

Кассетный тип

однопоточный

MKC-V


2-трубный

Индивидуальные пульты

R05/BGE, в комплекте

KJR-75A/BK-E, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Низкий уровень шума

Возможность гибкой установки

Оптимальное распределение воздуха

Сверхтонкий корпус

7-скоростной DC-двигатель вентилятора фанкойла

Компактное размещение

2-трубный

2-труоныи				насос		
Внутренний блок			MKC-V300R-B	MKC-V400R-B	MKC-V600R-B	
Декоративная панел	16			MBQ1-02D		
	Производительность (выс./ сред./ низ.)	кВт	2.64/2.23/1.68	3.44/2.99/2.68	5.09/4.36/3.58	
0.0000000000000000000000000000000000000	Потребляемая мощность (выс./ сред./ низ.)	Вт	22/18/14	25/19/17	38/27/19	
Расход воздуха (выс./с	Расход воды	м³/ч	0.49/0.42/0.33	0.6/0.52/0.45	0.87/0.7/0.55	
	Гидравлическое сопротивление	кПа	8.63/6.26/3.69	23.85/18.07/14.80	38.22/28.95/19.41	
	Производительность (выс./ сред./ низ.)	кВт	3.15/2.83/2.29	4.00/3.32/2.73	5.75/4.68/3.6	
Цагрор	Потребляемая мощность (выс./ сред./ низ.)	Вт	16/11/8	25/12/10	31/20/12	
	Расход воды	м³/ч	0.5/0.42/0.32	0.59/0.49/0.42	0.86/0.67/0.48	
	Гидравлическое сопротивление	кПа	13.49/9.95/6.84	23.62/15.50/12.42	45.56/32.26/18.92	
Электропитание		В, Гц, Ф		220,50,1		
Расход воздуха (выс./	сред./низ.)	м³/ч	510/432/330	630/509/428	1000/786/583	
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	44.3/40.6/33.5	36.6/32.6/30.4	44.6/38.6/33.1	
/ровень звукового дав	Габариты (Ш×В×Г)	MM	1180×25×465	1350×25×505	1350×25×505	
цекоративная панель	Macca	КГ	3.5	4	4	
Puntanauuuğ Saak	Габариты (Ш×В×Г)	MM	1055*×153×425	1275×189×452	1275×189×452	
внутреннии олок	Macca	КГ	12.5	17.5	17.5	
T.a 6	Диаметр труб на вх./вых.	дюйм		G ¹ / ₂		
груоные соединения	Диаметр дренажа	MM		.69 23.85/18.07/14.80 38.22/28.95/ 29 4.00/3.32/2.73 5.75/4.68/ 25/12/10 31/20/12 32 0.59/0.49/0.42 0.86/0.67/ 6.84 23.62/15.50/12.42 45.56/32.26/ 220,50,1 30 630/509/428 1000/786/4 3.5 36.6/32.6/30.4 44.6/38.6/ 55 1350×25×505 1350×25×505 4 4 425 1275×189×452 1275×189×4 17.5 17.5		
Встроенная дренажна	я помпа, напор	MM		750		
	3-ходовой клапан с четырьмя портами			KFV21A		
Опциональные	Подключение сетевого и центрального упра	вления		-		
элементы	3-ходовой клапан, без трубной обвязки			FV3D15V1		
Нагрев Электропитание Расход воздуха (выс. /ровень звукового д Декоративная панелі Знутренний блок Грубные соединения Зстроенная дренажн	2-ходовой клапан, без трубной обвязки			FV2D15V1		

^{1.} Выс. — высокие обороты вентилятора; сред. — средние обороты вентилятора; низ. — низкие обороты вентилятора.

^{2.} Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.). 3. Условия нагрева: температура воды на входе 45°C, температура воздуха на входе 20°C (сух. терм.). Расход воды, как в режиме охлаждения 4. Уровень шума измерялся в полубезэховой камере.

Кассетный тип

Четырехпоточный компактный

Инструкция

STOCK

Индивидуальные

R05/BGE, в комплекте

Фанкойл 2-трубный

Центральный

пульт

CCM-180A/BWS(A), опция

KJR-29B/BK-Е, опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт ХҮЕ. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

DC-двигатель вентилятора фанкойла

Доступен приток свежего воздуха

FV2D20V1

втоматическ перезапуск

2-трубный, четырехпоточный компактный

Технические характеристики

MKD-V400 MKD-V500 Внутренний блок MKD-V300 T-MBQ4-03B1 Декоративная панель Производительность (выс./ сред./ низ.) кВт 2.98/2.53/2 3.96/3.26/2.76 4.2/3.48/3.01 Потребляемая мощность (выс./ сред./ низ.) Вт 22.7/9/5 37/15/9 43/28/21 Охлаждение Расход воды 0.53/0.45/0.35 0.7/0.58/0.51 0.75/0.61/0.54 Перепад давлений по воде кПа 10.00/7.00/5.00 11.50/8.20/6.50 12.30/8.60/7.40 Производительность (выс./ сред./ низ.) кВт 2.61/2.31/2.24 4.08/3.34/2.73 4.95/3.99/3.26 Потребляемая мощность (выс./ сред./ низ.) Вт 15/9/5 28/16/10 33/18/11 Нагрев 0.64/0.54/0.42 Расход воды м³/ч 0.83/0.67/0.56 0.87/0.70/0.58 Перепад давлений по воде кПа 12.10/8.50/5.30 12.68/8.60/6.00 9.4/8.23/6.1 Электропитание 220 50 1 В. Гц. Ф 535/429/322 Расход воздуха (выс./сред./низ.) 719/477/381 781/611/494 42/36/30 43/38/32 Уровень звукового давления (выс./сред./низ.) дБ(А) 39/33/27 Габариты (Ш×В×Г) мм 647×50×647 647×50×647 647×50×647 Декоративная панель 2.5 2.5 Macca ΚГ 2.5 575×261×575 Габариты (Ш×В×Г) 575×261×575 575×261×575 мм Внутренний блок 16.5 Macca ΚГ 15.5 16.5 G3/4 Диаметр труб на вх./вых. дюйм Трубные соединения Ø25 Диаметр дренажа мм Встроенная дренажная помпа, напор 750 мм KFV21A 3-ходовой клапан с четырьмя портами KFP21-Z1 Комплект трубной обвязки для KFV21A FD-Z/KFD-Z Опциональные Дренажный поддон 3-ходового клапана элементы Подключение сетевого и центрального управления Встроен FV3D20V1 3-ходовой клапан, без трубной обвязки

2-ходовой клапан, без трубной обвязки

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 20°C (сух. терм.) / 15°C (влажн. терм.).

^{3.} Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный

Центральный

пульт

Кассетный тип

Четырехпоточный компактный

MKD-V FA

4-трубный

Индивидуальные пульты

R05/BGE, в комплекте

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

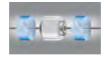
DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Распределение воздушного потока на 360°

Возможность гибкой vстановки


Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

DC-двигатель вентилятора фанкойла

Технические характеристики

4-трубный, четырехпоточный компактный

Встроен

FV3D20V1+FV3D15V1

FV2D20V1+FV2D15V1

втоматический перезапуск

Внутренний блок			MKD-V300FA	MKD-V400FA	MKD-V500FA		
Декоративная панел	ПЬ			T-MBQ4-03B1			
	Производительность (выс./ сред./ низ.)	кВт	2.16/1.86/1.49	2.78/2.38/2.05	3.1/2.38/2.07		
0	Потребляемая мощность (выс./ сред./ низ.)	Вт	24/18/14	38/35/30	42/27/20		
Охлаждение	Расход воды	м³/ч	0.42/0.37/0.3	0.53/0.46/0.4	0.56/0.49/0.43		
	Перепад давлений по воде	кПа	17.40/13.50/9.30	13.15/9.40/7.00	16.80/13.10/10.30		
	Производительность (выс./ сред./ низ.)	кВт	3.13/2.63/2.08	3.71/3.14/2.65	3.94/3.30/2.83		
нагрев	Потребляемая мощность (выс./ сред./ низ.)	Вт	17/10/6	32/18/11	35/18/11		
нагрев	Расход воды	м³/ч	0.32/0.28/0.23	0.37/0.32/0.28	0.42/0.36/0.32		
Расход воздуха (выс./с	Перепад давлений по воде	кПа	23.50/17.10/11.30	24.10/17.90/13.10	26.80/19.20/14.50		
Электропитание		В, Гц, Ф		220,50,1			
Расход воздуха (выс./	'сред./низ.)	м³/ч	493/395/295	669/523/415	673/526/425		
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	39/33/27	42/35/30	44/39/31		
Декоративная панель	Габариты (Ш×В×Г)	MM	647×50×647	647×50×647	647×50×647		
цекоративная панель	Macca	KF	2.5	2.5	2.5		
Внутренний блок	Габариты (Ш×В×Г)	MM	575×261×575	575×261×575	575×261×575		
энутренний олок	Macca	КГ	16.7	16.7	16.7		
Грубные соединения	Диаметр труб на вх./вых.	дюйм	Холо	одная вода: ${\sf G}^3\!/_{\!\!4}$; горячая вод	a: G½		
руоные соединения	Диаметр дренажа	MM		Ø25			
Зстроенная дренажна	эя помпа, напор	MM		750			
	3-ходовой клапан с четырьмя портами			KQV21A			
	Комплект трубной обвязки для KQV21A		KQP21-Z1				
Опциональные	Дренажный поллон 3-холового клапана			FD-Z/KFD-Z			

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.).

Подключение сетевого и центрального управления

3-ходовой клапан, без трубной обвязки

2-ходовой клапан, без трубной обвязки

элементы

^{3.} Уровень шума измерялся в полубезэховой камере.

Кассетный тип

Четырехпоточный стандартный

MKA-V_R

2-трубный

sтоск

Индивидуальные

R05/BGE, в комплекте

пульт

Фанкойл 2-трубный

Центральный

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Распределение воздушного потока на 360°

Возможность гибкой vстановки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

DC-двигатель вентилятора фанкойла

Автоматический перезапуск

2-трубный, четы	ырехпоточный стандартный			воздуха	насос			
Внутренний блок			MKA-V600R	MKA-V750R	MKA-V850R	MKA-V950R	MKA-V1200R	MKA-V1500F
Декоративная панел	1b				т-мвс	Q4-01E		
	Производительность (выс./ сред./ низ.)	кВт	5.93/5.3/4.4	6.12/5.45/4.6	7.52/6.46/5.89	7.84/6.84/6.35	7.87/7.12/6.67	10.70/8.67/7.48
0	Потребляемая мощность (выс./ сред./ низ.)	Вт	41/30/20	49/31/20	68/37/30	75/42/34	85/59/45	137/68/48
Охлаждение	Расход воды	м³/ч	1.06/0.92/0.77	1.10/0.96/0.81	1.37/1.18/1.07	1.43/1.24/1.13	1.44/1.28/1.22	1.96/1.53/1.28
Внутренний блок Декоративная панел Охлаждение Электропитание Расход воздуха (выс./ Уровень звукового да Декоративная панель Внутренний блок Трубные соединения Встроенная дренажна	Перепад давлений по воде	кПа	23.80/19.10/13.60	26/21.30/12.40	20.10/15.30/12.60	22.00/17.00/14.10	22.30/18.10/16.30	36.60/22.70/16.40
	Производительность (выс./ сред./ низ.)	кВт	6.06/5.72/5.32	6.27/5.88/5.43	7.88/7.48/6.76	8.49/8/7.35	9.16/8.54/7.9	11.86/9.48/8.25
Haman	Потребляемая мощность (выс./ сред./ низ.)	Вт	42/28/17	49/32/21	68/37/28	76/42/33	86/59/45	130/60/41
нагрев	Расход воды	м³/ч	1.30/1.14/1.13	1.39/1.20/1.00	1.66/1.39/1.25	1.71/1.45/1.33	1.73/1.57/1.46	2.35/1.86/1.59
Внутренний блок Декоративная панел Охлаждение Нагрев Электропитание Расход воздуха (выс./с Уровень звукового дав Декоративная панель Внутренний блок Трубные соединения Встроенная дренажная	Перепад давлений по воде	кПа	25.90/20.10/19.90	30.00/22.70/16.30	26.70/18.80/15.60	28.10/20.70/17.40	28.80/24.00/20.70	49.20/31.20/23.30
			220,50,1					
Расход воздуха (выс./	сред./низ.)	м³/ч	1175/987/768	1229/1020/810	1451/1146/1012	1530/1224/1101	1581/1371/1236	1871/1415/1198
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	43/39/33	44/40/34	45/40/37	46/42/39	48/44/41	49/43/39
Декоративная панель	Габариты (Ш×В×Г)	MM	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950
	Масса	КГ	6	6	6	6	6	6
Вимтронний блок	Габариты (Ш×В×Г)	MM	840×230×840	840×230×840	840×300*840	840×300×840	840×300×840	840×300×840
внутренний олок	Масса	КГ	23.0	23.9	27.0	27.0	27.0	29.5
Трубина соопинация	Диаметр труб на вх./вых.	дюйм			RC	³ / ₄		
труоные соединения	Диаметр дренажа	MM			Ø	32	85/59/45 1.44/1.28/1.22 22.30/18.10/16.30 9.16/8.54/7.9 86/59/45 1.73/1.57/1.46 28.80/24.00/20.70 1581/1371/1236 48/44/41 950×45×950 6 840×300×840	
Встроенная дренажна	я помпа, напор	MM			75	50		
	3-ходовой клапан с четырьмя портами				KF\	′21A		
	Комплект трубной обвязки для KFV21A				KFP:	21-V1		
Опциональные	Дренажный поддон 3-ходового клапана				FD-V/	KFD-V		
элементы	Подключение сетевого и центрального упра	вления			Встр	ооен		
	3-ходовой клапан, без трубной обвязки				FV3D	20V1		
	2-ходовой клапан, без трубной обвязки		[FV2D	20V1		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный

Центральный

Кассетный тип

Четырехпоточный стандартный

MKA-V_FA

4-трубный

Индивидуальные пульты

R05/BGE, в комплекте

пульт

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

DC-двигатель вентилятора фанкойла

Автоматический перезапуск

4-трубный, четы	ырехпоточный стандартный		воздуха		насос				
екоративная панель Производительность (выс./ сред./ низ.) Потребляемая мощность (выс./ сред./ ни: Расход воды Перепад давлений по воде Производительность (выс./ сред./ низ.) Потребляемая мощность (выс./ сред./ низ.) Расход воды Перепад давлений по воде			MKA- V600FA	MKA- V750FA	MKA- V850FA	MKA- V950FA	MKA- V1200FA	MKA- V1500FA	
Декоративная панел	lb				Т-МВО	Q4-01E			
	Производительность (выс./ сред./ низ.)	кВт	4.96/4.38/3.64	5.18/4.56/3.88	5.13/4.41/4.06	5.31/4.59/4.28	7.98/7.25/6.70	8.04/6.62/5.84	
	Потребляемая мощность (выс./ сред./ низ.)	Вт	62/44/30	72/50/35	80/49/40	90/54/43	121/83/66	139/70/49	
Охлаждение	Расход воды	м³/ч	0.9/0.8/0.67	0.94/0.83/0.71	0.93/0.81/0.75	0.96/0.84/0.78	1.42/1.29/1.2	1.43/1.19/1.05	
Декоративная панел Охлаждение Нагрев Рлектропитание Расход воздуха (выс./ Уровень звукового да Декоративная панель	Перепад давлений по воде	кПа	14.80/11.50/8.10	15.90/12.40/9.00	16.00/14.20/10.40	16.40/12.60/10.90	33.90/30.00/24.00	33.00/22.60/17.70	
	Производительность (выс./ сред./ низ.)	кВт	6.15/5.43/4.61	6.52/5.79/4.94	6.68/5.75/5.28	6.74/5.83/5.4	9.75/8.96/8.42	9.93/8.33/7.51	
	Потребляемая мощность (выс./ сред./ низ.)	Вт	56/36/21	67/42/25	75/41/31	84/46/35	118/79/61	125/64/42	
Знутренний блок Декоративная панел Охлаждение Нагрев Расход воздуха (выс./с/ровень звукового дав Декоративная панель Знутренний блок Трубные соединения Встроенная дренажная	Расход воды	м³/ч	0.58/0.52/0.45	0.61/0.55/0.47	0.62/0.54/0.50	0.63/0.55/0.52	0.89/0.82/0.77	0.90/0.76/0.69	
	Перепад давлений по воде	кПа	25.30/20.50/14.50	32.00/25.70/19.10	32.60/24.70/21.20	34.00/26.60/23.50	42.40/36.60/32.60	48.70/32.50/27.00	
Электропитание		В, Гц, Ф	220,50,1						
Расход воздуха (выс./	сред./низ.)	м3/ч	1184/997/783	1278/1057/855	1328/1052/927	1403/1115/1001	1642/1421/1285	1708/1297/1096	
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	42/37/31	44/39/33	45/39/36	46/41/38	48/44/42	49/43/38	
	Габариты (Ш×В×Г)	MM	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	
цекоративная панель	Macca	КГ	6	6	6	6	6	6	
D	Габариты (Ш×В×Г)	MM	840×300×840	840×300×840	840×300×840	840×300×840	840×300×840	840×300×840	
Уровень звукового даг Декоративная панель Внутренний блок Трубные соединения	Macca	КГ	27.5	27.5	27.5	27.5	30.0	30.0	
Ta6	Диаметр труб на вх./вых.	дюйм		Холс	дная вода: G ³ /	, 4; горячая вод	a: G½		
груоные соединения	Диаметр дренажа	MM			Ø	32	7.98/7.25/6.70 121/83/66 1.42/1.29/1.2 33.90/30.00/24.00 9.75/8.96/8.42 118/79/61 0.89/0.82/0.77 142.40/36.60/32.60 1642/1421/1285 48/44/42 950×45×950 6 840×300×840 30.0		
Встроенная дренажна	я помпа, напор	MM			75	50			
	3-ходовой клапан с четырьмя портами				KQ\	/21A			
	Комплект трубной обвязки для KQV21A				KQP	21-V1			
Опциональные	Дренажный поддон 3-ходового клапана		FD-V/KFD-V						
элементы	Подключение сетевого и центрального упра	вления			Встр	ооен			
	3-ходовой клапан, без трубной обвязки			FV	3D20V1+FV3D1	15V1		_	
	2-ходовой клапан, без трубной обвязки			FV.	2D20V1+FV2D1	15V1		<u> </u>	

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Кассетный тип

Четырехпоточный стандартный

MKA-V-CA

2-трубный

Инструкция

Распределение воздушного потока на 360°

Возможность гибкой установки

Компактный дизайн

Низкий уровень шума

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта РQE.
Подключение к центральному пульту Midea (до 64 фанкойлов)

Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла

Приток свежего воздуха

7-скоростной DC-двигатель вентилятора фанкойла

Технические характеристики

2-трубный, четырехпоточный стандартный

ЕСОЭнергосбережен

KFD-C

Встроен

FV3D20V1

FV2D20V1

NEW

Индивидуальные

RM12F1, в комплекте

WDC3-86S, опция

осуществляется через порт ХҮЕ.

пульты

183

й ИК-пульт в комплект

Автоматический

Фанкойл 2-трубный

Центральный

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

пульт

MKA-V600-CA MKA-V700-CA MKA-V800-CA MKA-V1000-CA MKA-V1200-CA T-MBQ4-01E1 Декоративная панель Производительность 5.50/5.25/5.00/ 6.50/6.10/5.70/ 7.50/7.00/6.50/ 8.50/8.20/7.65/6.95/ 10.50/10.00/9.50/ кВт (7/6/5/4/3/2/1 — скорости) 4.55/4.00/3.20/2.70 5.10/4.80/4.40/3.75 6.00/5.50/4.90/4.30 6.40/5.80/4.85 8.90/8.00/7.10/6.20 40/35/30/ 45/35/30/ 60/50/40/ 100/80/60/ 50/40/30/20 200/150/110/ 80/60/40/30 25/20/15/12 25/20/15/12 30/25/20/15 (7/6/5/4/3/2/1 — скорости) Охлаждение 1.04/0.97/0.90/0.81/ 1.20/1.08/0.99/0.90/ 1.33/1.23/1.13/1.06/ 1.56/1.46/1.35/1.22/ 2.02/1.89/1.76/1.64/ Расход воды м3/ч 0.71/0.58/0.49 0.82/0.76/0.70 0.96/0.85/0.77 1.12/1.01/0.86 1.50/1.32/1.16 45/35/32/30/ 30/28/25/20/ 45/40/35/30/ 45/40/35/30 35/32/29/25/ Перепад давлений по воде кПа 25/20/18 18/16/14 20/18/14 25/20/18 25/20/17 Производительность 6.50/6.20/5.90/ 5.25/4.85/4.30/3.55 7.50/7.20/6.60/ 6.10/5.50/5.00/4.10 8.50/7.90/7.20/ 6.60/5.90/5.40/4.70 9.50/9.35/8.75/ 12.00/11.20/10.50/ 9.95/9.00/8.00/6.90 кВт (7/6/5/4/3/2/1 - скорости) 8.10/7.40/6.60/5.80 40/35/30/ 100/80/60/ 200/150/110/ Потребляемая мощность 45/35/30/ 60/50/40/ Вт (7/6/5/4/3/2/1 — скорости) 25/20/15/12 25/20/15/12 30/25/20/15 50/40/30/20 80/60/40/30 Нагрев 1.18/1.09/1.04/0.94/ 1.35/1.28/1.19/1.07/ 1.48/1.39/1.28/1.17/ 1.73/1.66/1.57/1.44/ 45/40/35/30/ Расход воды $M^3/4$ 0.84/0.75/0.64 0.97/0.88/0.81 1.03/0.93/0.83 1.30/1.16/1.02 25/20/17 45/35/32/30/ 30/28/25/20/ 35/32/29/25/ 45/40/35/30/ 45/40/35/30/ Перепад давлений по воде 25/20/18 18/16/14 20/18/14 25/20/18 25/20/17 В, Гц, Ф 220, 50, 1 Электропитание 1020/950/880/ 1190/1090/990/ 1360/1280/1180/ 1700/1600/1450/ 1950/1850/1650/ Расход воздуха (7/6/5/4/3/2/1— скорости) м³/ч 780/700/620/490 900/790/680/560 1040/920/800/650 1250/1150/1000/810 1450/1300/1150/950 Уровень звукового давления 39.8/37.5/35.2 37.4/34.6/31.8 / 41.4/38.7/35.8/ 46.8/44.5/41.6/ 51.5/49.3/46.9/ дБ(А) (7/6/5/4/3/2/1— скорости) /32.3/29.2/25.9/22.3 28.9/25.9/23.5/20.7 32.5/29.1/25.9/23.1 38.4/34.8/30.8/26.8 950×77×950 Декоративная Габариты (Ш×В×Г) мм панель Macca ΚГ 5.8 Габариты (Ш×В×Г) 840×204×840 Внутренний ММ 23.6 19.3 Трубные Диаметр труб на вх./вых дюйм RC3/ соединения Ø25 Диаметр дренажа ММ 750 Встроенная дренажная помпа, напор 3-ходовой клапан с четырьмя портами

KFP21-C1

управления

Комплект трубной обвязки для KFV21A

Дренажный поддон 3-ходового клапана

Подключение сетевого и центрального

3-ходовой клапан, без трубной обвязки 2-ходовой клапан, без трубной обвязки

Опциональные

элементы

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.).

^{3.} Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный

Центральный

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

пульт

Кассетный тип

Четырехпоточный стандартный

MKA-V F-CA

4-трубный

Распределение воздушного потока на 360°

Возможность гибкой vстановки


Компактный дизайн

Низкий уровень шума

Приток свежего воздуха

7-скоростной DC-двигатель вентилятора фанкойла

Технические характеристики

4-трубный, четырехпоточный стандартный

ECÖ Энерго-

NEW

RM12F1, в комплекте

WDC3-86S, опция

осуществляется через порт ХҮЕ.

пульты

Индивидуальные

Встроенный насос

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет Подключение к центральному пульту Midea (до 64 фанкойлов)

Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

MKA-V600F-CA Внутренний блок MKA-V700F-CA MKA-V800F-CA MKA-V1000F-CA

Декоративная	панель				T-MBQ4-01E1		
	Производительность (7/6/5/4/3/2/1— скорости)	кВт	4.40/4.20/4.00/ 3.70/3.40/3.00/2.65	5.00/4.70/4.40/ 4.15/3.90/3.55/3.00	5.50/5.20/4.90/ 4.60/4.20/3.80/3.40	8.00/7.16/5.12	9.00/8.13/5.98
Охлаждение	Потребляемая мощность (7/6/5/4/3/2/1— скорости)	Вт	40/30/25/20/ 15/12/10	45/35/30/25/ 20/15/13	60/50/40/30/ 25/20/15	112/48/19	205/76/27
Охлаждение	Расход воды	м³/ч	0.88/0.82/0.74/0.65/0 .60/0.53/0.46	0.90/0.88/0.83/0.77/ 0.74/0.67/0.63	1.02/0.98/0.92/0.86/ 0.76/0.69/0.62	1.60/1.25/0.89	1.80/1.42/1.04
	Перепад давлений по воде	кПа	30/28/26/25/ 22/16/14	35/32/30/27/ 25/20/15	40/35/30/28/ 22/18/17	38.95/24.65/13.18	47.72/30.75/17.05
	Производительность (7/6/5/4/3/2/1— скорости)	кВт	6.00/5.75/5.41/ 5.11/4.94/4.40/3.80	7.00/6.83/6.70/ 6.40/6.30/5.50/4.65	7.50/7.10/6.70/ 6.35/5.95/5.50/5.20	8.50/7.88/6.04	9.30/8.13/7.01
Haman	Потребляемая мощность (7/6/5/4/3/2/1— скорости)	Вт	40/30/25/20/ 15/12/10	45/35/30/25/ 20/15/13	60/50/40/30/ 25/20/15	109.00/47.00/18.00	186.00/74.00/25.00
Нагрев	Расход воды	м³/ч	0.68/0.63/0.59/0.55/0 .50/0.41/0.33	0.71/0.68/0.64/0.61/ 0.57/0.51/0.41	0.79/0.74/0.69/0.63/ 0.59/0.53/0.46	0.82/0.70/0.53	0.94/0.79/0.61
	Перепад давлений по воде	кПа	35/28/26/25/ 22/16/14	35/32/30/27/ 25/20/15	40/35/30/28/ 22/18/17	45.00/33.00/20.00	51.30/43.60/31.80
Электропитани	е	В, Гц, Ф			220, 50, 1		
Расход воздуха	сход воздуха (7/ 6/ 5 / 4/ 3/ 2/1— скорости)		1020/930/870/ 800/720/620/520	1190/1080/950/ 880/790/680/560	1360/1250/1120/ 1000/900/800/660	1703/1259/807	2042/1507/966
Уровень звуков (7/ 6/ 5 / 4/ 3/	ого давления 2/1 — скорости)	дБ(А)	34.2/31.5/29.0/ 26.3/24.1/21.8/20.6	37.4/34.5/31.6/ 28.4/25.6/23.2/21.0	41.2/38.6/35.7/ 32.2/28.9/25.6/22.8	46.9/38.8/27.5	51.3/43.6/31.8
Декоративная	Габариты (Ш×В×Г)	MM			950×77×950	***************************************	
панель	Macca	КГ			5.8		
Внутренний	Габариты (Ш×В×Г)	MM			840×288×840		
блок	Масса	KΓ	23.9	23.9	23.9	26.2	26.2
Трубные	Диаметр труб на вх./вых.	дюйм		Холодна	я вода: G ³ ⁄ ₄ ; горячая	вода: G ¹ / ₂	
соединения	Диаметр дренажа	MM			Ø25		
Встроенная дре	енажная помпа, напор	MM			750		
	3-ходовой клапан с четырьмя по	ртами			KQV21A		
	Комплект трубной обвязки для К	QV21A			KQP21-C1		
Опциональные	Дренажный поддон 3-ходового клаг				KFD-C		
элементы	Подключение сетевого и централ управления	пьного			Встроен		
	3-ходовой клапан, без трубной о	бвязки			FV3D20V1+FV3D15V1		
	2-ходовой клапан, без трубной о	бвязки			FV2D20V1+FV2D15V1		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 65°C, температура воды на входе 20°C (сух. терм.).

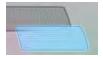
^{3.} Уровень шума измерялся в полубезэховой камере.

Канальный тип

Статический напор 12/30/50 Па*

MKT3-V_G12-CL

2-трубный, 3-рядный



Инструкция

Компактный размер для удобного монтажа

Низкий уровень шума

Система фильтрации воздуха

Защитное покрытие дренажного поддона

7-скоростной DC-двигатель вентилятора фанкойла

Фанкойл 2-трубный

Центральный

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт XYE, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

фанкойла.

пульт

Смена стороны подключения труб на заводе или на объекте

Технические характеристики

2-трубный, 3-рядный, канальный

Индивидуальные

WDC3-86S, опция

DC70W / DC80W NEW,

пульты

опция

Внутренний блок			MKT3- V200G12-CL	MKT3- V300G12-CL	MKT3- V400G12-CL	MKT3- V500G12-CL	MKT3- V600G12-CL			
	Производительность (выс./ сред./ низ.)	кВт	2.45/2.05/1.59	3.35/2.89/2.21	4.25/3.69/2.88	4.55/3.92/2.97	5.85/4.88/3.66			
0	Потребляемая мощность (выс./ сред./ низ.)	Вт	17.0/12.0/9.0	22.00/14.00/9.00	32/21/13	35/25/13	59/34/18			
Охлаждение	Расход воды	м³/ч	0.41/0.35/0.28	0.59/0.49/0.37	0.76/0.63/0.49	0.80/0.67/0.54	1.00/0.84/0.65			
	Перепад давлений по воде	кПа	17.00/13.70/10.94	23.00/17.60/10.60	19.00/14.70/9.40	23.00/18.96/12.11	34.00/26.50/16.90			
	Производительность (выс./ сред./ низ.)	кВт	2.68/2.24/1.83	3.95/3.25/2.51	5.00/4.31/3.36	5.50/4.38/3.20	6.90/5.66/4.21			
Нагрев	Расход воды	м³/ч	0.45/0.38/0.33	0.67/0.55/0.42	0.89/0.74/0.57	0.92/0.76/0.59	1.16/0.96/0.75			
	Перепад давлений по воде	кПа	17.00/13.10/11.86	25.00/18.10/11.20	21.00/15.90/9.90	25.00/19.93/11.95	38.00/28.70/18.60			
Статический напор		Па		*	12/30/50*					
Электропитание		В, Гц, Ф			220,50,1					
Расход воздуха (выс./	асход воздуха (выс./сред./низ.)			550/421/307	734/584/436	800/622/456	1022/810/552			
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	39/33/25	37/31/22.5	43/37.5/30	45/39/31	49.5/43.5/34			
D	Габариты (Ш×В×Г)	ММ	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482			
Внутренний блок	Macca	KF	14	17.2	19.2	19.2	21.7			
T	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄					
Трубные соединения	Диаметр дренажа	ММ			Ø19					
Встроенная дренажна	я помпа, напор	MM			750					
				KFV21A						
	Комплект трубной обвязки для KFV21A			KFP21-L1						
Опциональные элементы	Дренажный поддон 3-ходового клапана				Встроен					
STORICHT DI	3-ходовой клапан, без трубной обвязки				FV3D20V1					
	2-ходовой клапан, без трубной обвязки				FV2D20V1					

^{*} Статический напор можно установить с помощью переключателя на плате управления (12 Па установлено по умолчанию)

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный **DC**

_		-	_		_
7-TDV	′бныи	.5-r	ядный.	канал	ьныи

Внутренний блок			MKT3- V700G12-CL	MKT3- V800G12-CL	MKT3- V1000G12-CL	MKT3- V1200G12-CL	MKT3- V1400G12-CL
	Производительность (выс./ сред./ низ.)	кВт	6.50/6.04/5.09	8.02/6.65/5.37	9.05/7.10/4.97	10.08/7.25/6.02	11.11/10.58/9.77
Охлаждение	Потребляемая мощность (выс./ сред./ низ.)	Вт	70/48/30	67/40/22	114/50/18	110/51/28	110/85/62
Охлаждение	Расход воды	м³/ч	1.19/1.05/0.91	1.36/1.17/0.94	1.58/1.26/0.88	1.69/1.44/1.16	2.02/1.84/1.71
	Перепад давлений по воде	кПа	22.00/19.00/15.60	32.00/26.06/18.05	32.00/22.01/11.71	27.00/20.70/14.00	33.00/29.29/25.92
	Производительность (выс./ сред./ низ.)	кВт	7.60/6.96/5.81	9.40/7.36/5.82	11.00/8.02/5.41	11.83/8.32/6.78	12.67/11.98/10.59
Нагрев	Расход воды	м³/ч	1.38/1.22/1.05	1.53/1.26/0.98	1.78/1.36/0.92	1.94/1.64/1.30	2.23/2.04/1.84
	Перепад давлений по воде	кПа	25.00/21.10/16.20	41.00/25.33/16.36	33.00/21.55/10.90	26.00/20.12/13.30	34.00/30.41/25.26
Статический напор		Па			12/30/50*		
Электропитание		В, Гц, Ф			220,50,1		
Расход воздуха (выс./	Расход воздуха (выс./сред./низ.)		1190/1015/806	1400/1082/816	1650/1201/746	1750/1222/912	2250/1952/1675
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	51/45/40	49.5/43/36	54.5/46/34	49.5/42.5/33.5	53/50/46.5
Внутренний блок	Габариты (Ш×В×Г)	ММ	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×482
внутреннии олок	Macca	KF	23.5	27.7	27.7	33.8	37
Трубные соединения	Диаметр труб на вх./вых.	дюйм			RC ³ / ₄		
груоные соединения	Диаметр дренажа	ММ			Ø19		
Встроенная дренажна	я помпа, напор	ММ			750		
	3-ходовой клапан с четырьмя портами				KFV21A		
_	Комплект трубной обвязки для KFV21A				KFP21-L1		
Опциональные элементы	Дренажный поддон 3-ходового клапана				Встроен		
0.70.70111DI	3-ходовой клапан, без трубной обвязки				FV3D20V1		
	2-ходовой клапан, без трубной обвязки				FV2D20V1		

^{*} Статический напор можно установить с помощью переключателя на плате управления (12 Па установлено по умолчанию).

1. Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.).

2. Условия нагрева: температура воды на входе 45°C, температура воды на выходе 40°C, температура воздуха на входе 20°C (сух. терм.).

3. Уровень шума измерялся в полубезэховой камере.

Канальный тип

Статический напор 12/30/50 Па*

MKT4-V FG12-CL

4-трубный, 4-рядный

Индивидуальные пульты

WDC3-86S, опция

Фанкойл 4-трубный

Центральный

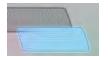
пульт

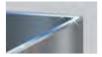
CCM-180A/BWS(A), опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

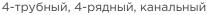
Фанкойл в стандартном исполнении имеет порт XYE, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения


Инструкция


Компактный размер для удобного монтажа

Низкий уровень шума

Система фильтрации


Защитное покрытие дренажного поддона

7-скоростной DC-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе

MKT4-V500FG12-CL MKT4-V600FG12-Cl Внутренний блок V300FG12-CL V200FG12-CL Производительность (выс./ сред./ низ.) кВт 2.70/2.04/1.30 3.50/3.23/2.92 4.30/3.99/3.71 4.90/4.30/3.68 5.80/5.17/4.50 0.49/0.36/0.23 0.62/0.56/0.51 0.74/0.69/0.64 0.84/0.73/0.63 0.99/0.88/0.76 Расход воды 40.32/32.90/25.74 Перепад давлений по воде кПа 34.02/23.12/14.82 30.29/26.78/23.80 21.14/18.70/16.50 28.20/22.54/17.1 Производительность (выс./ сред./ низ.) кВт 2.70/2.21/1.50 4.30/4.04/3.78 5.40/5.22/4.93 6.10/5.58/4.98 6.70/6.17/5.53 Нагрев м³/ч 0.24/0.19/0.13 0.37/0.35/0.33 0.476/0.459/0.433 0.53/0.49/0.43 0.57/0.52/0.47 31.82/28.91/26.11 37.80/32.10/26.14 49.14/42.24/35.14 кПа 43.71/32.11/20.66 24.72/23.10/21.65 Перепад давлений по воде Статический напор Па 12/30/50* Электропитание В, Гц, Ф 220.50.1 66/44/29 25.0/13.0/7.0 59/40/26 Потребляемая мощность Вт 28/22/17 38/31/26 Расход воздуха (выс./сред./низ.) $M^3/4$ 450/313/179 620/558/502 760/696/628 940/785/636 1050/894/741 Уровень звукового давления (выс./сред./низ.) дБ(А) 37/27.5/20.5 37/34.5/32 40.5/38.5/36.5 45/40.5/37.5 45/41.5/37.5 Габариты (Ш×В×Г) 632×243×482 773×243×482 908×243×482 908×243×482 1003×243×482 ММ Внутренний блок 19 13.5 16 20.5 Macca Диаметр труб на вх./вых. Холодная вода RC³¼; горячая вода RC³¼ BP Трубные соединения Диаметр дренажа Ø19 3-ходовой клапан с четырьмя портами KQV22A Комплект трубной обвязки для KQV22A KQP21-L1 Опциональные Дренажный поддон 3-ходового клапана Встроен FV3D20V1+FV3D20V1 3-ходовой клапан, без трубной обвязки FV2D20V1+FV2D20V1 2-ходовой клапан, без трубной обвязки

^{*} Статический напор можно установить с помощью переключателя на плате управления (12 Па установлено по умолчанию)

Статический напор изомно установлено и помощью переключателя на плате управления (12 па установлено по уполнамия).

1. Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.).

2. Условия нагрева: температура воды на входе 65°С, температура воды на выходе 55°С, температура воздуха на входе 20°С (сух. терм.).

^{3.} Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный **DC**

Технические характеристики

4-трубный, 4-рядный, канальный

Внутренний блок			MKT4- V700FG12-CL	MKT4- V800FG12-CL	MKT4- V1000FG12-CL	MKT4- V1200FG12-CL	MKT4- V1400FG12-CL				
	Производительность (выс./ сред./ низ.)	кВт	6.70/6.03/5.24	7.60/6.85/6.09	8.20/7.49/6.72	9.70/8.62/7.42	12.20/10.50/8.62				
Охлаждение	Расход воды	м³/ч	1.13/1.01/0.87	1.32/1.2/1.07	1.43/1.32/1.19	1.68/1.49/1.28	2.16/1.85/1.51				
	Перепад давлений по воде	кПа	27.11/22.01/17.20	31.60/27.71/24.2	35.20/31.59/27.64	31.08/26.50/21.97	46.30/37.08/28.19				
	Производительность (выс./ сред./ низ.)	кВт	6.70/6.18/5.58	10.10/9.34/8.50	10.60/9.92/9.07	10.70/9.72/8.66	13.40/12.10/10.46				
Нагрев	Расход воды	м³/ч	0.56/0.52/0.47	0.89/0.82/0.75	0.94/0.86/0.8	0.93/0.84/0.75	1.16/1.05/0.91				
	Перепад давлений по воде	кПа	47.92/41.42/34.72	52.34/46.15/40.35	56.42/49.68/44.56	30.86/27.11/23.5	45.42/39.1/32.07				
Статический напор		Па			12/30/50*						
Электропитание		В, Гц, Ф			220,50,1						
Потребляемая мощно	Вт	80/53/34	75/53/36	101/71.48	94/62/39	146/86/47					
Расход воздуха (выс./	сред./низ.)	м³/ч	1250/1068/890	1400/1209/1025	1560/1359/1161	1800/1521/1234	2380/1942/1501				
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	43.5/39.5/35.5	43.5/40.5/37	47/44/40.5	45/41.5/36.5	49.5/44.5/39				
Внутренний блок	Габариты (Ш×В×Г)	MM	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×482				
внутреннии олок	Macca	КГ	22.5	27.5	27.5	35.5	39				
T6	Диаметр труб на вх./вых.	дюйм		Холодная во	да RC³/₄; горячая	вода RC³/ ₄ BP					
Трубные соединения	Диаметр дренажа	ММ	Ø19								
3-ходовой клапан с четырьмя портами			KQV22A								
	Комплект трубной обвязки для KQV22A			KQP21-L1							
Опциональные элементы	Дренажный поддон 3-ходового клапана				Встроен						
3) Grieniui	3-ходовой клапан, без трубной обвязки			F۱	/3D20V1+FV3D20	V1					
	2-ходовой клапан, без трубной обвязки			F۱	/2D20V1+FV2D20	V1					

^{*} Статический напор можно установить с помощью переключателя на плате управления (12 Па установлено по умолчанию).

1. Условия охлаждения: температура воды на входе 7°С, температура воды на выходе 12°С, температура воздуха на входе 27°С (сух. терм.) / 19°С (влажн. терм.).

2. Условия нагрева: температура воды на входе 65°С, температура воды на выходе 55°С, температура воздуха на входе 20°С (сух. терм.).

3. Уровень шума измерялся в полубезэховой камере.

Настенный тип

MKG

2-трубный

Панель С

Фанкойл 2-трубный

Центральный

Индивидуальные пульты

R05/BGE, в комплекте

пульт

CCM-180A/BWS(A), опция

KJR-29B/BK-E, опция

DC70W / DC80W NEW, опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.

Инструкция

Автоматическое качание жалюзи

Простота эксплуатации

Встроенный трехходовой клапан

Современный дизайн

Низкий уровень шума

7-скоростной DC-двигатель вентилятора фанкойла

Технические характеристики

2-трубный, настенный

Левое или правое подключение

Фильтр в комплекте

Внутренний блок			MKG-V200- C	MKG-V250- C(D)	MKG-V300- C(D)	MKG-V400- C(D)	MKG-V500- C(D)	MKG-V600- C(D)
	Производительность (выс./ сред./ низ.)	кВт	2.30/2.04/1.80	2.7/2.59/2.39	2.91/2.54/2.19	3.81/3.3/2.88	4.47/3.98/3.48	4.87/4.26/3.79
0	Потребляемая мощность (выс./ сред./ низ.)	Вт	12/10/9	13/11/10	15/11/9	34/22/15	26/18/13	38/26/18
Охлаждение	Расход воды	м³/ч	0.46/0.40/0.36	0.48/0.46/0.42	0.51/0.45/0.38	0.67/0.57/0.51	0.77/0.68/0.61	0.85/0.72/0.65
	Перепад давлений по воде	кПа	28.72/21.98/17.88	31.60/28.60/25.40	37.20/29.70/23.40	56.80/41.20/33.00	41.20/33.50/27.10	50.70/39.50/33.70
	Производительность (выс./ сред./ низ.)	кВт	2.73/2.00/1.70	2.94/2.02/1.86	3.23/2.77/2.42	4.3/3.65/3.09	4.84/3.81/3.62	5.26/4.1/3.5
Нагрев	Потребляемая мощность (выс./ сред./ низ.)	Вт	11/10/8	12/11/9	14/10/8	31/20/14	22/16/12	33/23/16
нагрев	Расход воды	м³/ч	0.49/0.45/0.38	0.51/0.49/0.46	0.56/0.49/0.42	0.73/0.64/0.56	0.84/0.73/0.64	0.89/0.80/0.68
	Перепад давлений по воде	кПа	31.65/26.96/19.58	37.5/34.9/30.2	40.60/31.50/25.10	61.90/47.50/35.70	43.70/33.80/26.30	51.70/42.80/33.00
Электропитание		В, Гц, Ф		***************************************	220	,50,1		
Расход воздуха (выс./	· сред./низ.)	м³/ч	462/412/356	492/454/400	585/485/413	825/689/590	862/741/634	979/849/717
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	31/28/26	32/30/27	32/27/23	45/39/35	38/34/30	44/40/35
D	Габариты (Ш×В×Г)	ММ	915×290×230	915×290×233	915×290×233	915×290×233	1072×315×237	1072×315×237
Внутренний блок	Macca	KΓ	11,5	11,5	11,5	11,5	14	14
	Диаметр труб на вх./вых.	дюйм			G	1/2		*
Трубные соединения	Диаметр дренажа	ММ			Ø	20		
	3-ходовой клапан				встр	ооен		
Опциональные	Комплект трубной обвязки				встр	оен		
элементы					встр	оен		
	Подключение сетевого и центрального упра	вления			встр	оен		

^{1.} Условия охлаждения: температура воды на входе 7° C, температура воды на выходе 12° C, температура воздуха на входе 27° C (сух. терм.) / 19° C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45° C, температура воздуха на входе 20° C (сух. терм.). 3. Уровень шума измерялся в безэховой камере.

Фанкойл 2-трубный

Серия Н1, в корпусе

MKH

2-трубный, 3-рядный

Индивидуальные пульты

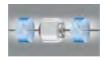
KJR-75A/BK-E, опция

Центральный пульт

CCM-180A/BWS(A), опция


ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ. но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения фанкойла.



Компактный размер

Низкий уровень шума

на полу или стене

Удобное размещение Система фильтрации воздуха

Возможность размещения пульта в специальной нише

7-скоростной DC-двигатель вентилятора фанкойла

Технические характеристики

2-трубный 3-ралный напольно-потолочный

Фильтр в комплекте

Внутренний блок			MKH1- V150-R3	MKH1- V250-R3	MKH1- V350-R3	MKH1- V500-R3	MKH1- V700-R3	MKH1- V800-R3
	Производительность (выс./ сред./ низ.)	кВт	1.44/1.01/0.88	2.23/1.84/1.13	3.41/2.81/2.16	4.25/3.43/2.67	4.94/3.94/2.77	6.21/5.17/3.86
Охлаждение	Расход воды	м³/ч	0.25/0.17/0.15	0.38/0.32/0.19	0.58/0.48/0.37	0.73/0.59/0.46	0.85/0.68/0.47	1.06/0.89/0.66
	Перепад давлений по воде	кПа	13.40/7.90/6.00	12.70/9.50/4.40	33.40/24.00/15.00	53.50/35.80/24.10	44.70/29.50/15.60	37.30/28.50/16.40
	Производительность (выс./ сред./ низ.)	кВт	1.50/1.02/0.88	2.47/2.00/1.27	3.70/3.02/2.29	4.64/3.65/2.77	5.29/4.20/2.96	6.80/5.46/3.98
Нагрев	Расход воды	м³/ч	0.26/0.17/0.15	0.42/0.34/0.22	0.63/0.52/0.39	0.80/0.63/0.47	0.91/0.72/0.51	1.17/0.94/0.68
	Перепад давлений по воде	кПа	14.50/7.30/5.60	13.60/9.80/4.30	34.20/23.80/14.50	53.60/36.40/22.00	49.00/33.20/17.00	39.70/27.00/15.40
Электропитание		В, Гц, Ф			220	,50,1		
Потребляемая мощно	Потребляемая мощность (выс./ сред./ низ.)		13.4/7.9/6.0	20/13/10	27/18/11	50/26/15	98/45/18	105/50/24
Расход воздуха (выс./сред./низ.)		м³/ч	245/160/135	380/245/140	580/435/310	780/550/380	1050/750/450	1150/850/570
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	34/23/21	30/22/14	39/32/24	46/39/30	52/43/32	53/46/36
Внутренний блок	Габариты (Ш×В×Г)	MM	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×495×211
внутреннии олок	Macca	KF	18	21.5	25.5	25.5	28.5	32.5
T6	Диаметр труб на вх./вых.	дюйм			G	3/4		
Трубные соединения	Диаметр дренажа	ММ			Ø1	8,5		
	3-ходовой клапан с четырьмя портами				KFV	/21A		
Комплект трубной обвязки для KFV21A					KFP21-H/FL1			KFP21-H/FL2
Опциональные	Дренажный поддон 3-ходового клапана				KFD-H-1-6			KFD-H-7
элементы	3-ходовой клапан, без трубной обвязки				FV3D)20V1		
	2-ходовой клапан, без трубной обвязки				FV2D)20V1		
	Комплект монтажных опор				SB	i-1P		

^{1.} Условия охлаждения: температура воды на входе 7° С, температура воды на выходе 12° С, температура воздуха на входе 27° С (сух. терм.) / 19° С (влажн. терм.). 2. Условия нагрева: температура воды на входе 45° С, температура воды на входе 40° С, температура воздуха на входе 20° С (сух. терм.) / 15° С (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Серия Н1, в корпусе

MKH

2-трубный, 4-рядный

Индивидуальные пульты

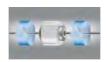
KJR-75A/BK-E, опция

Центральный пульт

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения


Инструкция

Компактный размер

Низкий уровень шума

на полу или стене

Удобное размещение Система фильтрации воздуха

Возможность размещения пульта в специальной нише

7-скоростной DC-двигатель вентилятора фанкойла

Внутренний блок			MKH1- V150-R4	MKH1- V250-R4	MKH1- V350-R4	MKH1- V500-R4	MKH1- V700-R4	MKH1- V800-R4
	Производительность (выс./ сред./ низ.)	кВт	1.87/1.59/1.16	2.55/1.90/1.26	3.80/3.11/2.36	4.73/3.82/2.85	5.60/4.58/3.19	7.30/5.88/4.28
Охлаждение	Расход воды	м³/ч	0.32/0.27/0.2	0.44/0.33/0.22	0.65/0.53/0.40	0.81/0.65/0.49	0.96/0.79/0.55	1.25/1.01/0.73
	Перепад давлений по воде	кПа	26.10/20.10/11.80	23.20/13.50/6.60	36.50/25.30/15.00	53.00/35.90/21.20	28.90/19.20/10.10	63.00/40.80/22.50
	Производительность (выс./ сред./ низ.)	кВт	1.97/1.68/1.20	2.63/1.92/1.27	3.90/3.13/2.43	5.12/3.98/2.96	6.22/4.95/3.37	7.70/6.02/4.29
Нагрев	Расход воды	м³/ч	0.34/0.29/0.21	0.45/0.33/0.22	0.67/0.54/0.40	0.88/0.68/0.51	1.07/0.85/0.58	1.32/1.03/0.74
	Перепад давлений по воде	кПа	24.00/18.80/9.90	21.80/12.20/5.90	35.60/24.70/13.90	52.00/35.60/20.00	33.20/22.50/11.00	55.00/36.40/19.20
Электропитание		В, Гц, Ф			220	,50,1		
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	20/16/11	21/12/8	30/18/12	52/28/15	99/50/20	105/50/23
Расход воздуха (выс./сред./низ.)		м³/ч	245/180/130	380/240/110	580/430/300	780/560/390	1050/770/460	1150/860/600
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	39/33/26	33/26/17	39/32/24	46/39/30	52/42/33	53/46/36
Внутренний блок	Габариты (Ш×В×Г)	ММ	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×495×211
внутреннии олок	Macca	КГ	18.5	22	26.5	26.5	29.5	34.5
T6	Диаметр труб на вх./вых.	дюйм			G	3/4		
Трубные соединения	Диаметр дренажа	MM			Ø 1	18.5		
	3-ходовой клапан с четырьмя портами				KF\	/21A		
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2
Опциональные	Дренажный поддон 3-ходового клапана				KFD-H-1-6			KFD-H-7
элементы	3-ходовой клапан, без трубной обвязки				FV3D)20V1		
	2-ходовой клапан, без трубной обвязки				FV2D)20V1		
	Комплект монтажных опор				SB	i-1P		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный

Серия Н1, в корпусе

MKH

4-трубный, 4-рядный

Индивидуальные пульты

KJR-75A/BK-E, опция

Центральный пульт

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

Компактный размер

Низкий уровень шума

Удобное размещение Система фильтрации на полу или стене

воздуха

Возможность размещения пульта в специальной нише

7-скоростной DC-двигатель вентилятора фанкойла

Технические характеристики

4-трубный, 4-рядный, напольно-потолочный

Внутренний блок			MKH1- V150F-R4	MKH1- V250F-R4	MKH1- V350F-R4	MKH1- V500F-R4	MKH1- V700F-R4	MKH1- V800F-R4
	Производительность (выс./ сред./ низ.)	кВт	1.63/1.38/0.91	2.41/1.73/0.99	3.70/3.10/2.26	4.49/3.66/2.76	5.34/4.41/3.02	7.65/6.19/4.54
Охлаждение	Расход воды	м³/ч	0.279/0.24/0.16	0.41/0.30/0.17	0.63/0.53/0.38	0.77/0.63/0.47	0.92/0.76/0.52	1.16/0.94/0.69
	Перепад давлений по воде	кПа	17.5/13.74/7.50	15.2/9.73/3.51	38.2/28.35/16.91	54.8/39.04/23.84	47.4/36.96/19.07	48.07/32.56/18.32
	Производительность (выс./ сред./ низ.)	кВт	1.35/1.18/0.91	2.06/1.45/1.02	2.81/2.43/1.95	3.27/2.81/2.30	4.06/3.48/2.66	6.6/5.7/4.6
Нагрев	Расход воды	м³/ч	0.12/0.10/0.08	0.18/0.13/0.09	0.24/0.21/0.17	0.28/0.24/0.20	0.35/0.3/0.23	0.57/0.49/0.40
	Перепад давлений по воде	кПа	10.3/8.5/5.3	25.2/18.45/8.5	54.0/43/28.5	67.8/54.65/37.3	116.76/104.19/56.23	71.63/56.17/37.44
Электропитание		В, Гц, Ф			220	,50,1		
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	20/16/11	21/12/8	30/18/12	52/28/15	99/50/20	102/49/22
Расход воздуха (выс./сред./низ.)		м³/ч	245/180/130	380/240/110	580/430/300	780/560/390	1050/770/460	1300/969/661
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	39/33/26	33/26/17	39/32/24	46/39/30	52/42/33	53/46/36
Внутренний блок	Габариты (Ш×В×Г)	ММ	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×591×211
внутреннии олок	Macca	КГ	19.0	22.5	27.0	27.0	30.0	35.0
T.a., 6a aaaaa	Диаметр труб на вх./вых.	дюйм		Холо	одная вода: G ³ /	/ ₄ ; горячая вода	a: G½	
Трубные соединения	Диаметр дренажа	ММ			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KQ\	/21A		
Комплект трубной обвязки для KQV21A					KQP21-H/FL1			KQP21-H/FL2
пциональные Дренажный поддон 3-ходового клапана					KFD-H-1-6			KFD-H-7
элементы	3-ходовой клапан, без трубной обвязки			FV	3D20V1+FV3D1	5V1		_
	2-ходовой клапан, без трубной обвязки			FV	2D20V1+FV2D1	5V1		_
	Комплект монтажных опор				SB	i-1P		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 65°C, температура воды на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Серия Н2, в корпусе

MKH

2-трубный, 3-рядный

пульты

KJR-75A/BK-E, опция

Индивидуальные

Центральный пульт

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

Инструкция

Компактный размер

Низкий уровень шума

на полу или стене

Удобное размещение Система фильтрации воздуха

Возможность размещения пульта в специальной нише

7-скоростной DC-двигатель вентилятора фанкойла

Внутренний блок			MKH2- V150-R3	MKH2- V250-R3	MKH2- V350-R3	MKH2- V500-R3	MKH2- V700-R3	MKH2- V800-R3
	Производительность (выс./ сред./ низ.)	кВт	1.50/1.06/0.92	2.35/1.94/1.19	3.50/2.89/2.22	4.30/3.48/2.71	5.60/4.47/3.14	7.35/6.12/4.57
Охлаждение	Расход воды	м³/ч	0.26/0.18/0.16	0.40/0.34/0.21	0.60/0.50/0.38	0.74/0.60/0.47	0.96/0.77/0.54	1.27/1.05/0.79
	Перепад давлений по воде	кПа	13.94/8.21/6.16	13.33/9.98/4.59	34.08/24.63/15.39	54.22/36.22/22.78	50.67/33.38/17.73	44.12/33.70/19.41
	Производительность (выс./ сред./ низ.)	кВт	1.57/1.07/0.92	2.60/2.11/1.34	3.80/3.10/2.35	4.70/3.70/2.81	6.00/4.77/3.36	8.05/6.46/4.71
Нагрев	Расход воды	м³/ч	0.27/0.19/0.16	0.45/0.37/0.23	0.65/0.53/0.40	0.81/0.64/0.48	1.04/0.83/0.59	1.39/1.12/0.82
	Перепад давлений по воде	кПа	15.10/7.63/5.84	14.31/10.33/4.50	35.13/24.41/14.82	54.29/36.87/22.32	55.49/37.66/19.27	46.88/31.90/18.16
Электропитание		В, Гц, Ф			220	,50,1		
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	15/9/8	17/12/7	26/16/10	47.00/24.00/14.00	84.00/40.00/17.00	107.00/50.00/21.0
Расход воздуха (выс./сред./низ.)		м³/ч	255/170/150	400/315/190	595/470/340	790/580/410	1190/855/505	1360/1015/685
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	34/24/21	29/24/18	38/32/23	46/38/30	50/42/31	51/44/33
Внутренний блок	Габариты (Ш×В×Г)	ММ	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591×200
внутреннии олок	Macca	КГ	18.0	21.5	25.5	25.5	28.5	32.5
T.a., 6a aaaaa	Диаметр труб на вх./вых.	дюйм			G	3/4		
Трубные соединения	Диаметр дренажа	MM			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KFV	/21A		
	Комплект трубной обвязки для KFV21A				KFP21-H/FL1			KFP21-H/FL2
Опциональные	Дренажный поддон 3-ходового клапана				KFD-H-1-6			KFD-H-7
элементы	3-ходовой клапан, без трубной обвязки				FV3D20V1			_
	2-ходовой клапан, без трубной обвязки				FV2D20V1			_
	Комплект монтажных опор		1		SB	i-1P		*

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.) / 15°C (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

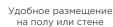
Фанкойл 2-трубный

Серия Н2, в корпусе

MKH

2-трубный, 4-рядный

Инструкция


Компактный размер

Низкий

уровень шума

Индивидуальные пульты

KJR-75A/BK-E, опция

Центральный пульт

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

Возможность

размещения пульта

в специальной нише

7-скоростной DC-двигатель вентилятора фанкойла

Технические характеристики

2-трубный, 4-рядный, напольно-потолочный

			MKH2-	MKH2-	MKH2-	мкн2-	мкн2-	MKH2-
Внутренний блок			V150-R4	V250-R4	V350-R4	V500-R4	V700-R4	V800-R4
	Производительность (выс./ сред./ низ.)	кВт	1.95/1.66/1.21	2.85/2.13/1.41	3.90/3.20/2.43	4.85/3.92/2.93	6.35/5.19/3.62	8.25/6.65/4.84
Охлаждение	Расход воды	м³/ч	0.33/0.28/0.21	0.49/0.37/0.24	0.67/0.55/0.42	0.83/0.67/0.51	1.09/0.90/0.63	1.43/1.14/0.83
	Перепад давлений по воде	кПа	27.20/20.88/12.20	26.01/15.06/7.41	37.40/25.91/15.37	54.33/36.81/21.77	32.77/21.75/11.43	71.43/46.17/25.39
	Производительность (выс./ сред./ низ.)	кВт	2.05/1.75/1.25	2.95/2.15/1.42	4.00/3.22/2.39	5.25/4.09/3.04	7.05/5.61/3.83	8.37/6.81/4.85
Нагрев	Расход воды	м³/ч	0.35/0.30/0.22	0.51/0.37/0.24	0.70/0.56/0.43	0.91/0.71/0.53	1.22/0.98/0.67	1.51/1.18/0.83
	Перепад давлений по воде	кПа	25.34/19.65/10.25	24.38/13.65/6.64	36.52/25.34/14.22	53.44/36.54/20.47	37.61/25.47/12.50	62.61/41.06/21.68
Электропитание		В, Гц, Ф			220	,50,1		
Потребляемая мощно	отребляемая мощность (выс./ сред./ низ.)		20/14/9	20/11/8	29/17/12	47.00/25.00/13.00	87.00/44.00/18.00	102/51/22
Расход воздуха (выс./сред./низ.)		м³/ч	255/210/150	425/300/190	595/450/310	800/600/420	1190/875/530	1300/980/680
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	52/46/38	32/23/19	40/34/30	45/39/30	50/43/31	50/43/33
Внутренний блок	Габариты (Ш×В×Г)	ММ	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591×200
ьнутренний олок	Масса	КГ	18.5	22.0	26.5	26.5	29.5	34.5
Трубные соединения	Диаметр труб на вх./вых.	дюйм			G	3/4		
труоные соединения	Диаметр дренажа	MM			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KFV	/21A		
Комплект трубной обвязки для KFV21A					KFP21-H/FL1			KFP21-H/FL2
пциональные Дренажный поддон 3-ходового клапана			KFD-H-1-6					KFD-H-7
элементы	3-ходовой клапан, без трубной обвязки				FV3D20V1			_
	2-ходовой клапан, без трубной обвязки				FV2D20V1			_
	Комплект монтажных опор				SB	i-1P		

^{1.} Условия охлаждения: температура воды на входе 7° С, температура воды на выходе 12° С, температура воздуха на входе 27° С (сух. терм.) / 19° С (влажн. терм.). 2. Условия нагрева: температура воды на входе 40° С, температура воздуха на входе 20° С (сух. терм.) / 15° С (влажн. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный

Серия Н2, в корпусе

MKH

4-трубный, 4-рядный

Индивидуальные пульты

KJR-75A/BK-E, опция

Центральный пульт

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

Инструкция

Компактный размер

Низкий уровень шума

Удобное размещение Система фильтрации на полу или стене

воздуха

Возможность размещения пульта в специальной нише

7-скоростной DC-двигатель вентилятора фанкойла

Внутренний блок			MKH2- V150F-R4	MKH2- V250F-R4	MKH2- V350F-R4	MKH2- V500F-R4	MKH2- V700F-R4	MKH2- V800F-R4
	Производительность (выс./ сред./ низ.)	кВт	1.70/1.44/0.95	2.70/1.94/1.10	3.80/3.18/2.32	4.60/3.75/2.83	6.05/5.00/3.43	7.65/6.19/4.54
Охлаждение	Расход воды	м³/ч	0.29/0.25/0.16	0.46/0.33/0.19	0.65/0.55/0.40	0.79/0.64/0.49	1.04/0.86/0.59	1.31/1.06/0.78
	Перепад давлений по воде	кПа	18.16/13.74/7.50	16.97/9.73/3.51	39.17/28.35/16.91	56.18/39.04/23.84	53.66/36.96/19.07	48.07/32.56/18.32
	Производительность (выс./ сред./ низ.)	кВт	1.40/1.23/0.95	2.30/1.78/1.22	2.88/2.49/2.00	3.35/2.88/2.36	4.60/3.95/3.02	7.50/6.44/5.22
Нагрев	Расход воды	м³/ч	0.12/0.11/0.08	0.20/0.15/0.10	0.25/0.21/0.17	0.29/0.25/0.20	0.39/0.34/0.26	0.64/0.55/0.45
	Перепад давлений по воде	кПа	10.74/8.50/5.49	28.16/18.45/10.08	55.37/43.00/29.20	69.57/54.65/38.21	132.32/104.19/63.73	71.63/56.17/37.44
Электропитание		В, Гц, Ф		***************************************	220	,50,1		*
Потребляемая мощно	сть (выс./ сред./ низ.)	Вт	20/14/9	20/11/8	29/17/11	52/28/15	92/46/19	102/49/22
Расход воздуха (выс./сред./низ.)		м³/ч	255/206/134	425/280/158	595/461/324	800/595/417	1190/887/564	1300/969/66
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	39/33/25	32/23/19	40/34/30	45/39/30	50/43/31	50/43/33
D	Габариты (Ш×В×Г)	MM	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591×200
Внутренний блок	Macca	KΓ	19	22.5	27	27	30	35
	Диаметр труб на вх./вых.	дюйм		Холо	одная вода: G ³ /	; ₄ ; горячая вода	a: G½	
Трубные соединения	Диаметр дренажа	MM			Ø1	8.5		
	3-ходовой клапан с четырьмя портами				KQ\	/21A		
	Комплект трубной обвязки для KQV21A				KQP21-H/FL1			KQP21-H/FL2
Опциональные	Дренажный поддон 3-ходового клапана				KFD-H-1-6			KFD-H-7
элементы	3-ходовой клапан, без трубной обвязки			FV:	3D20V1+FV3D1	5V1		_
	2-ходовой клапан, без трубной обвязки			FV	2D20V1+FV2D1	5V1		_
	Комплект монтажных опор				SB	-1P		

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 65°C, температура воды на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Серия НЗ, без корпуса

MKH

2-трубный, 3-рядный

Инструкция

Компактный размер

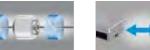
Удобное размещение Система фильтрации на полу или стене

воздуха

Индивидуальные пульты

KJR-75A/BK-E, опция

Центральный пульт



CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

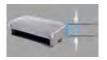
Смена стороны подключения труб на заводе или на объекте

Внутренний блок			MKH3- V150-R3	MKH3- V250-R3	MKH3- V350-R3	MKH3- V500-R3	MKH3- V700-R3	MKH3- V800-R3	
	Производительность (выс./ сред./ низ.)	кВт	1.50/1.06/0.92	2.35/1.94/1.19	3.50/2.89/2.22	4.30/3.48/2.71	5.60/4.47/3.14	7.35/6.12/4.57	
Охлаждение	Расход воды	м³/ч	0.26/0.18/0.16	0.40/0.34/0.21	0.60/0.50/0.38	0.74/0.60/0.47	0.96/0.77/0.54	1.27/1.05/0.79	
	Перепад давлений по воде	кПа	13.94/8.21/6.16	13.33/9.98/4.59	34.08/24.63/15.39	54.22/36.22/22.78	50.67/33.38/17.73	44.12/33.70/19.41	
	Производительность (выс./ сред./ низ.)	кВт	1.57/1.07/0.92	2.60/2.11/1.34	3.80/3.10/2.35	4.7/3.7/2.81	6.00/4.77/3.36	8.05/6.46/4.71	
Нагрев	Расход воды	м³/ч	0.27/0.19/0.16	0.45/0.37/0.23	0.65/0.53/0.40	0.81/0.64/0.48	1.04/0.83/0.59	1.39/1.12/0.82	
Перепад давлений по воде		кПа	15.10/7.63/5.84	14.31/10.33/4.50	35.13/24.41/14.82	54.29/36.87/22.32	55.49/37.66/19.27	46.88/31.90/18.16	
Электропитание В, Гц,		В, Гц, Ф	220,50,1						
Потребляемая мощность (выс./ сред./ низ.)		Вт	15/9/8	17/12/7	27/16/10	50/25/14	100/43/18	113/53/22	
Расход воздуха (выс./сред./низ.)		м³/ч	255/170/150	400/315/190	595/470/340	790/580/410	1190/855/505	1360/1015/685	
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	34/24/21	29/24/18	38/32/23	46/38/30	50/42/31	51/44/33	
Внутренний блок	Габариты (Ш×В×Г)	ММ	637×455×200	867×455×200	1087×455×200	1087×455×200	1207×455×200	1207×550×200	
внутреннии олок	Macca	KF	11.8	13.9	17.3	17.3	19.6	23.1	
T6	Диаметр труб на вх./вых.	дюйм	G ³ / ₄						
Трубные соединения	Диаметр дренажа	MM	Ø18.5						
	3-ходовой клапан с четырьмя портами		KFV21A						
	Комплект трубной обвязки для KFV21A			KFP21-H/FL2					
Опциональные элементы	Дренажный поддон 3-ходового клапана		KFD-H-1-6 KFD-H-7						
	3-ходовой клапан, без трубной обвязки		FV3D20V1						
	2-ходовой клапан, без трубной обвязки		FV2D20V1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 2-трубный

Серия Н3, без корпуса


MKH

2-трубный, 4-рядный

Инструкция

Компактный размер

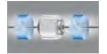
Низкий

Удобное размещение Система фильтрации воздуха

Индивидуальные пульты

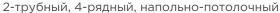
KJR-75A/BK-E, опция

Центральный пульт



CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция


Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения

Смена стороны подключения труб на заводе или на объекте

Левое

Внутренний блок			MKH3- V150-R4	MKH3- V250-R4	MKH3- V350-R4	MKH3- V500-R4	MKH3- V700-R4	MKH3- V800-R4	
	Производительность (выс./ сред./ низ.)	кВт	1.95/1.66/1.21	2.85/2.13/1.41	3.90/3.20/2.43	4.85/3.92/2.93	6.35/5.19/3.62	8.25/6.65/4.84	
Охлаждение	Расход воды	м³/ч	0.33/0.28/0.21	0.49/0.37/0.24	0.67/0.55/0.42	0.83/0.67/0.51	1.09/0.90/0.63	1.43/1.14/0.83	
	Перепад давлений по воде	кПа	27.20/20.88/12.20	26.01/15.06/7.41	37.40/25.91/15.37	54.33/36.81/21.77	32.77/21.75/11.43	71.43/46.17/25.39	
	Производительность (выс./ сред./ низ.)	кВт	2.05/1.75/1.25	2.95/2.15/1.42	4.00/3.22/2.50	5.25/4.09/3.04	7.05/5.61/3.83	8.70/6.81/4.85	
Нагрев	Расход воды	м³/ч	0.35/0.30/0.22	0.51/0.37/0.24	0.70/0.56/0.43	0.91/0.71/0.53	1.22/0.98/0.67	1.51/1.18/0.83	
Перепад давлений по воде		кПа	25.34/19.65/10.25	24.38/13.65/6.64	36.52/25.34/14.22	53.44/36.54/20.47	37.61/25.47/12.50	62.61/41.06/21.68	
Электропитание В, Гь		В, Гц, Ф	220,50,1						
Потребляемая мощность (выс./ сред./ низ.)		Вт	20/14/9	19/11/8	28/17/12	49/27/14	97/47/19	106/49/22	
Расход воздуха (выс./сред./низ.)		м³/ч	255/210/150	425/300/190	595/470/340	790/600/420	1190/875/530	1300/980/680	
Уровень звукового давления (выс./сред./низ.)		дБ(А)	39/33/25	32/23/19	40/34/30	45/39/30	50/43/31	50/43/33	
Внутренний блок	Габариты (Ш×В×Г)	ММ	637×455×200	867×455×200	1087×455×200	1087×455×200	1207×455×200	1207×550×200	
Бнутренний олок	Macca	KΓ	12.1	14.8	18.2	18.2	20.8	24.3	
Трубные соединения	Диаметр труб на вх./вых.	дюйм	G ^{3/} ₄						
груоные соединения	Диаметр дренажа	ММ	Ø18.5						
3-ходовой клапан с четырьмя портами			KFV21A						
Комплект трубной обвязки для KFV21A			KFP21-H/FL1 KFP2					KFP21-H/FL2	
Опциональные элементы	Дренажный поддон 3-ходового клапана		KFD-H-1-6 KFD-						
5710110111151	3-ходовой клапан, без трубной обвязки		FV3D20V1						
	2-ходовой клапан, без трубной обвязки		FV2D20V1						

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 45°C, температура воды на входе 40°C, температура воздуха на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Фанкойл 4-трубный

Серия НЗ, без корпуса

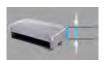
MKH

4-трубный, 4-рядный

Индивидуальные пульты

KJR-75A/BK-E, опция

Центральный пульт

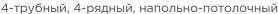

CCM-180A/BWS(A), опция

ССМ-30/ВКЕ-А, опция

Фанкойл в стандартном исполнении имеет порт ХҮЕ, но не имеет порта PQE. Подключение к центральному пульту Midea (до 64 фанкойлов) осуществляется через порт XYE. Подключение по протоколу ModBus-RTU через порт PQE возможно при заказе нестандартного исполнения



Компактный размер


Низкий уровень шума

Удобное размещение Система фильтрации на полу или стене

воздуха

7-скоростной DC-двигатель вентилятора фанкойла

Смена стороны подключения труб на заводе или на объекте

Внутренний блок			MKH3- V150F-R4	MKH3- V250F-R4	MKH3- V350F-R4	MKH3- V500F-R4	MKH3- V700F-R4	MKH3- V800F-R4
	Производительность (выс./ сред./ низ.)	кВт	1.70/1.44/0.95	2.70/1.94/1.10	3.80/3.18/2.32	4.60/3.75/2.83	6.05/5.00/3.43	7.65/6.19/4.54
Охлаждение	Расход воды	м³/ч	0.29/0.25/0.16	0.46/0.33/0.19	0.65/0.55/0.40	0.79/0.64/0.49	1.04/0.86/0.59	1.31/1.06/0.78
	Перепад давлений по воде	кПа	18.16/13.74/7.50	16.97/9.73/3.51	39.17/28.35/16.91	56.18/39.04/23.84	53.66/36.96/19.07	48.07/32.56/18.32
	Производительность (выс./ сред./ низ.)	кВт	1.40/1.23/0.95	2.30/1.78/1.22	2.88/2.49/2.00	3.35/2.88/2.36	4.60/3.95/3.02	7.50/6.44/5.22
Нагрев	Расход воды	м³/ч	0.12/0.11/0.08	0.20/0.15/0.10	0.25/0.21/0.17	0.29/0.25/0.20	0.39/0.34/0.26	0.64/0.55/0.45
	Перепад давлений по воде	кПа	10.74/8.50/5.49	28.16/18.45/10.08	55.37/43.00/29.20	69.57/54.65/38.21	132.32/104.19/63.73	71.63/56.17/37.44
Электропитание		В, Гц, Ф	220,50,1					
Потребляемая мощность (выс./ сред./ низ.)		Вт	20/14/9	20/11/8	29/17/11	52/28/15	92/46/19	102/49/22
Расход воздуха (выс./сред./низ.)		м³/ч	255/206/134	425/280/158	595/461/324	800/595/417	1190/887/564	1300/969/661
Уровень звукового да	вления (выс./сред./низ.)	дБ(А)	39/33/25	32/23/19	40/34/30	45/39/30	50/43/31	50/43/33
Внутренний блок	Габариты (Ш×В×Г)	MM	637×455×200	867×455×200	1087×455×200	1087×455×200	1207×455×200	1207×550×200
внутреннии олок	Macca	KΓ	12.6	15.3	18.7	18.7	21.3	24.8
Трубные соединения	Диаметр труб на вх./вых.	дюйм						
груоные соединения	Диаметр дренажа	MM	Ø18.5					
	3-ходовой клапан с четырьмя портами		KQV21A					
Комплект трубной обвязки для KQV21A					KQP21-H/FL1			KQP21-H/FL2
Опциональные	Дренажный поддон 3-ходового клапана			KFD-H-7				
элементы	3-ходовой клапан, без трубной обвязки		FV3D20V1+FV3D15V1					_
	2-ходовой клапан, без трубной обвязки			FV	2D20V1+FV2D1	5V1		_

^{1.} Условия охлаждения: температура воды на входе 7°C, температура воды на выходе 12°C, температура воздуха на входе 27°C (сух. терм.) / 19°C (влажн. терм.). 2. Условия нагрева: температура воды на входе 65°C, температура воды на входе 20°C (сух. терм.). 3. Уровень шума измерялся в полубезэховой камере.

Инверторные компрессорноконденсаторные блоки

MVUC(H)_CCU

- Модельный ряд представлен компрессорно-конденсаторными блоками 24 типоразмеров холодопроизводительностью 3,5—106 кВт в моноблочном исполнении.
- Модели холодопроизводительностью 33,5—85 кВт можно объединять в группу. При объединении блоков можно достигнуть общей холодопроизводительности системы 255 кВт*.
- Некоторые модели холодопроизводительностью 3,5—17,5 и 106 кВт оснащены функцией теплового насоса, за счет чего возможна работа на нагрев. Обозначаются:
 MVUH с тепловым насосом:

MVUC — только холод.

- Инверторные технологии компрессора позволяют экономить до 30% потребляемой электроэнергии.
- Midea предлагает готовое решение под ключ в виде компрессорно-конденсаторного блока и модуля для подключения фреоновых секций центрального кондиционера (опция).
- В комплекте с модулем подключения AHUKZ-F / AHUKZ-D / AHUKZ-D (At) поставляются: проводной пульт, ЭРВ, температурные датчики.

Модель	MVUH35CCU- VA1	MVUH50CCU- VA1	MVUH60CCU- VA1	MVUH80CCU- VA1	MVUH100CCU- VA1	MVUH120CCU- VA1
Холодопроизводительность, кВт	3,5	5,3	6,2	8	10	12,3
EER	3,71	3,6	3,35	3,81	3,76	3,6
Теплопроизводительность, кВт	3,8	5,8	6	9	12	14
COP	4,43	4,3	4,25	4,41	3,81	3,9
Тип компрессора	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter

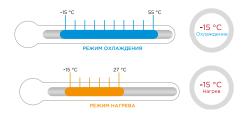
Модель	MVUH140CCU- VA1	MVUH160CCU- VA1	MVUH180CCU- VA1	MVUC200CCU- VA3	MVUC224CCU- VA3	MVUC260CCU- VA3
Холодопроизводительность, кВт	14	15,5	17,5	20	22,4	26
EER	3,5	3,2	2,9	3,9	3,78	3,5
Теплопроизводительность, кВт	16	18	19,5	-	-	-
СОР	4	3,7	3,5	-	-	-
Тип компрессора	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter

Модель	MVUC280CCU- VA3	MVUC335CCU- VA3	MVUC400CCU- VA3	MVUC450CCU- VA3	MVUC500CCU- VA3	MVUC560CCU- VA3
Холодопроизводительность, кВт	28	33,5	40	45	50	56
EER	3,4	3,81	4,12	3,67	3,74	3,21
Теплопроизводительность, кВт	-	-	-	-	-	-
СОР	-	-	-	-	-	-
Тип компрессора	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter

Модель	MVUC615CCU- VA3	MVUC670CCU- VA3	MVUC730CCU- VA3	MVUC785CCU- VA3	MVUC850CCU- VA3	MVUH1060CCU- VA3
Холодопроизводительность, кВт	61,5	67	73	78,5	85	106
EER	3,55	3,52	3,76	3,52	3,22	2,81
Теплопроизводительность, кВт	-	-	-	-	-	119
COP	-	-	-	-	-	3,11
Тип компрессора	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter

^{*}Особенности объединения блоков в группу см. на стр. 161.

Конструктивные и функциональные особенности



Модельный ряд от 3,5 до 17,5 кВт

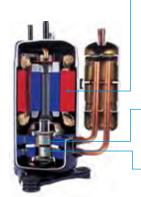
Модельный ряд представлен кромпрессорно-конденсаторными блоками 9 типоразмеров с фронтальным выдувом воздуха — холодопроизводительностью от 3.5 кВт до 17,5 кВт.

Широкий диапазон рабочих температур

 Система обеспечивает стабильную работу в широком диапазоне наружных температур в режиме охлаждения и обогрева.

Простота монтажа

 Модули AHUKZ(At) позволяют подключить компрессорно-конденсаторный блок к центральному кондиционеру.


Особенности монтажа

Высокоэффективный DC-инверторный компрессор

- Благодаря применению DC-инверторного компрессора и DC-электродвигателя вентилятора обеспечиваются высокая эффективность и энергосбережение.
- Инверторные системы экономят электроэнергию и, по сравнению с обычными системами, потребляют меньше энергии при одинаковой производительности.
- Неоспоримым преимуществом для пользователей является более точное поддержание температуры в помещении.

Компрессор (двухроторный)

Высокоэффективный двигатель постоянного тока

- Оригинальная конструкция индуктора электродвигателя
- Неодимовый магнит, имеющий высокую индукцию
- Статор усиленной конструкции
- Широкий рабочий частотный диапазон

Улучшенная балансировка и низкий уровень вибраций

- Сдвоенные эксцентриковые кулачки
- Два балансировочных груза

Надежные подвижные элементы

- Совместимые материалы ротора и плунжера компрессора
- Оптимальная технология привода компрессора
- Подшипники высокой прочности
- Компактная конструкция

Длины трасс и перепады высот

Блок	Максимальная длина трассы, м	Максимальный перепад высот при расположении наружного блока выше, м	Максимальный перепад высот при расположении наружного блока ниже, м
MVUH35CCU-VA1	20	10	10
MVUH50CCU-VA1	20	10	10
MVUH60CCU-VA1	20	10	10
MVUH80CCU-VA1	20	10	10
MVUH100CCU-VA1	40	20	20
MVUH120CCU-VA1	40	20	20
MVUH140CCU-VA1	60	30	20
MVUH160CCU-VA1	60	30	20
MVUH180CCU-VA1	60	30	20

Совместимость ККБ с блоками управления*

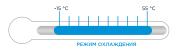
	-	
Модель ККБ	Блок управления	
MVUH35CCU-VA1		
MVUH50CCU-VA1	ALLIKZ OOD(A+)	
MVUH60CCU-VA1	AHUKZ-00D(At)	
MVUH80CCU-VA1		
MVUH100CCU-VA1		
MVUH120CCU-VA1		
MVUH140CCU-VA1	AHUKZ-01D(At)	
MVUH160CCU-VA1		
MVUH180CCU-VA1		

^{*} Один блок управления AHUKZ(At) может быть подключен только к одной теплообменной секции приточной установки.

Конструктивные и функциональные особенности

Инструкция

NEW


MVUC CCU

Модельный ряд представлен кромпрессорно-конденсаторными блоками 9 типоразмеров с фронтальным выдувом воздуха — холодопроизводительностью от 3,5 кВт до 17,5 кВт.

Широкий диапазон рабочих температур

Система обеспечивает стабильную работу в широком диапазоне наружных температур в режиме охлаждения.

Для моделей MVUC

Высокоэффективный DC-инверторный компрессор

- Благодаря применению DC-инверторного компрессора и DC-электродвигателя вентилятора обеспечиваются высокая эффективность и энергосбережение.
- Инверторные системы экономят электроэнергию и, по сравнению с обычными системами, потребляют меньше энергии при одинаковой производительности.
- Неоспоримым преимуществом для пользователей является более точное поддержание температуры в помещении.

Простота монтажа

Модули AHUKZ позволяют подключить компрессорно-конденсаторный блок к центральному кондиционеру.

Особенности монтажа

Компрессор (двухроторный)

Высокоэффективный двигатель постоянного тока

- Оригинальная конструкция индуктора электродвигателя
- Неодимовый магнит, имеющий высокую индукцию
- Статор усиленной конструкции
- Широкий рабочий частотный диапазон

Улучшенная балансировка и низкий уровень вибраций

- Сдвоенные эксцентриковые кулачки
- Два балансировочных груза

Надежные подвижные элементы

- Совместимые материалы ротора и плунжера компрессора
- Оптимальная технология привода компрессора
- Подшипники высокой прочности
- Компактная конструкция

Длины трасс и перепады высот

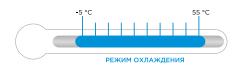
Блок	Максимальная длина трассы, м	Максимальный перепад высот при расположении наружного блока выше, м	Максимальный перепад высот при расположении наружного блока ниже, м		
MVUC35CCU-VA1	20	10	10		
MVUC50CCU-VA1	20	10	10		
MVUC60CCU-VA1	20	10	10		
MVUC80CCU-VA1	20	10	10		
MVUC100CCU-VA1	CCU-VA1 40 20		20		
MVUC120CCU-VA1	40	20	20		
MVUC140CCU-VA1	60	30	20		
MVUC160CCU-VA1	60	30	20		
MVUC180CCU-VA1	60	30	20		

Совместимость ККБ с блоками управления*

Модель ККБ	Блок управления AHUKZ-F			
MVUC35CCU-VA1				
MVUC50CCU-VA1	AHUKZ-00F			
MVUC60CCU-VA1	2.2-9 кВт			
MVUC80CCU-VA1				
MVUC100CCU-VA1				
MVUC120CCU-VA1				
MVUC140CCU-VA1	АНИКZ-01F 9-20 кВт			
MVUC160CCU-VA1				
MVUC180CCU-VA1				

^{*} Один блок управления AHUKZ может быть подключен только к одной теплообменной секции приточной установки.

Конструктивные и функциональные особенности

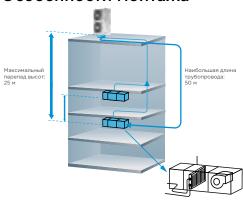


Модельный ряд от 20 до 28 кВт

 Модельный ряд представлен компрессорно-конденсаторными блоками 4 типоразмеров с фронтальным выдувом воздуха холодопроизводительностью от 20 до 28 кВт.

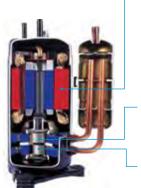
Широкий диапазон рабочих температур

 Система обеспечивает стабильную работу в широком диапазоне наружных температур в режиме охлаждения.



Простота монтажа

 Модули AHUKZ позволяют подключить компрессорно-конденсаторный блок к центральному кондиционеру.



Особенности монтажа

Высокоэффективный DC-инверторный компрессор

- Благодаря применению DC-инверторного компрессора и DC-электродвигателя вентилятора обеспечиваются высокая эффективность и энергосбережение.
- Инверторные системы экономят электроэнергию и, по сравнению с обычными системами, потребляют меньше энергии при одинаковой производительности.
- Неоспоримым преимуществом для пользователей является более точное поддержание температуры в помещении.

Компрессор (двухроторный)

Высокоэффективный двигатель постоянного тока

- Оригинальная конструкция индуктора электродвигателя
- Неодимовый магнит, имеющий высокую индукцию
- Статор усиленной конструкции
- Широкий рабочий частотный диапазон

Улучшенная балансировка и низкий уровень вибраций

- Сдвоенные эксцентриковые кулачки
- Два балансировочных груза

Надежные подвижные элементы

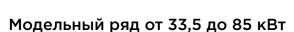
- Совместимые материалы ротора и плунжера компрессора
- Оптимальная технология привода компрессора
- Подшипники высокой прочности
- Компактная конструкция

Совместимость ККБ с блоками управления*

Модель ККБ	Блок управления AHUKZ-D	Блок управления AHUKZ-F		
MVUC200CCU-VA3	АНИКZ-01D 9-20 кВт	АНИКZ-01F 9-20 кВт		
MVUC224CCU-VA3				
MVUC260CCU-VA3	AHUKZ-02D 20-36 кВт	AHUKZ-02F 20-36 кВт		
MVUC280CCU-VA3				

^{*} Один блок управления AHUKZ может быть подключен только к одной теплообменной секции приточной установки.

Блок	Максимальная длина трассы, м	Максимальный перепад высот при расположении наружного блока выше, м	Максимальный перепад высот при расположении наружного блока ниже, м	
MVUC200CCU-VA3	50	25	20	
MVUC224CCU-VA3	50	25	20	
MVUC260CCU-VA3	50	25	20	
MVUC280CCU-VA3	50	25	20	



Конструктивные и функциональные особенности

Модельный ряд представлен компрессорно-конденсаторными блоками 10 типоразмеров — холодопроизводительностью от 33,5 до 85 кВт.

Модульная конструкция

Модульная конструкция позволяет объединить блоки до 3 штук. Благодаря наличию базовых модулей большой производительности суммарная мощность системы может достигать 255 кВт. Рабочий цикл уравнивает время работы наружных блоков в модульной системе, что значительно увеличивает срок службы компрессора.

Эффективный теплообменник наружного блока

Площадь новых теплообменников увеличена на 21%. Использование трехрядных теплообменников G-образной конструкции с новой формой ламелей позволило увеличить эффективность теплообмена на 20%, благодаря чему возросла скорость конденсации.

- Высокая надежность.
- Стабильная работа.
- Степень защиты от пыли и влаги IP55.

Конструктивные и функциональные особенности

Совместимость ККБ с блоками управления*

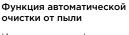
Модель ККБ	Блок управления AHUKZ-D	Блок управления AHUKZ-F	
MVUC335CCU-VA3	AHUKZ-02D	AHUKZ-02F	
MVUC400CCU-VA3			
MVUC450CCU-VA3	AHUKZ-03D	AHUKZ-03F	
MVUC500CCU-VA3	AHUKZ-U3D	AHUKZ-USF	
MVUC560CCU-VA3			
MVUC615CCU-VA3	AHUKZ-04D + DJRD-02		
MVUC670CCU-VA3	(рефнет)		
MVUC730CCU-VA3		AHUKZ-04F	
MVUC785CCU-VA3	AHUKZ-04D + DJRD-03 (рефнет)		
MVUC850CCU-VA3	(ροφο.)		

^{*} Один блок управления AHUKZ может быть подключен только к одной теплообменной секции приточной установки.

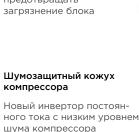
Особенности монтажа

Блок	Максимальная длина трассы, м	Максимальный перепад высот при распо- ложении наружного блока выше, м	Максимальный перепад высот при распо- ложении наружного блока ниже, м
MVUC335CCU-VA3	190	110	110
MVUC400CCU-VA3	200	110	110
MVUC450CCU-VA3	210	110	110
MVUC500CCU-VA3	215	110	110
MVUC560CCU-VA3	150	110	110
MVUC615CCU-VA3	150	110	110
MVUC670CCU-VA3	150	110	110
MVUC730CCU-VA3	140	110	110
MVUC785CCU-VA3	140	110	110
MVUC850CCU-VA3	140	110	110

Конструктивные и функциональные особенности

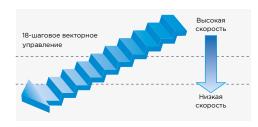


Температурный диапазон


Система обеспечивает стабильную работу на холод при температуре наружного воздуха от -15 до $55\,^{\circ}$ C.

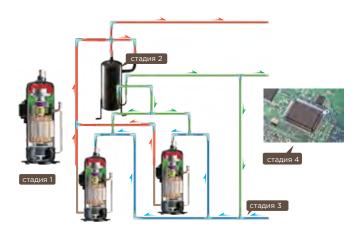
Технологии снижения шума

Инновационная функция очистки позволяет самостоятельно предотвращать загрязнение блока



Полностью DC-инверторные двигатели вентиляторов

DC-инверторный двигатель точно регулирует частоту вращения вентилятора в зависимости от действующей нагрузки и давления хладагента, что позволяет добиться минимального потребления электроэнергии.


Высокоэффективные балансировка и технология возврата масла

- Сепарация масла внутри компрессора.
- Высокоэффективный центробежный масляный сепаратор (эффективность сепарации до 99%) обеспечивает отделение масла от нагнетаемого газа и его возврат в компрессоры.
- Масловозвратные линии от сепаратора масла внутри наружного блока обеспечивают постоянный возврат масла в компрессоры во время работы.
- Программа автоматического отслеживания продолжительности эксплуатации и состояния системы гарантирует надежный возврат масла.

Методика охлаждения блока управления

Предусмотрено охлаждение платы управления хладагентом, поэтому вне зависимости от погодных условий система не выйдет из строя из-за перегрева электронных компонентов.

Модульное объединение компрессорноконденсаторных блоков

R410A DC INVERTER MVUC_CCU

Общая мощность системы, кВт	Базовые модули для объединения	Разветвитель объединения наружных блоков
90 (45 + 45)	MVUC450CCU-VA3 + MVUC450CCU-VA3	DJRT02F/DJRT02G
96 (40 + 56)	MVUC400CCU-VA3 + MVUC560CCU-VA3	DJRT02F/DJRT02G
101 (45 + 56)	MVUC450CCU-VA3 + MVUC560CCU-VA3	DJRT02F/DJRT02G
106 (50 + 56)	MVUC500CCU-VA3 + MVUC560CCU-VA3	DJRT02F/DJRT02G
112 (45 + 67)	MVUC450CCU-VA3 + MVUC670CCU-VA3	DJRT02F/DJRT02G
117 (50 + 67)	MVUC500CCU-VA3 + MVUC670CCU-VA3	DJRT02F/DJRT02G
123 (56 + 67)	MVUC560CCU-VA3 + MVUC670CCU-VA3	DJRT02F/DJRT02G
130 (45 + 85)	MVUC450CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
135 (50 + 85)	MVUC500CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
141 (56 + 85)	MVUC560CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
147 (62 + 85)	MVUC615CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
152 (67 + 85)	MVUC670CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
158 (73 + 85)	MVUC730CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
164 (79 + 85)	MVUC785CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
170 (85 + 85)	MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT02F/DJRT02G
175 (45 + 45 + 85)	MVUC450CCU-VA3 + MVUC450CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
181 (40 + 56 + 85)	MVUC400CCU-VA3 + MVUC560CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
186 (45 + 56 + 85)	MVUC450CCU-VA3 + MVUC560CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
191 (50 + 56 + 85)	MVUC500CCU-VA3 + MVUC560CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
197 (45 + 67 + 85)	MVUC450CCU-VA3 + MVUC670CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
202 (50 + 67 + 85)	MVUC500CCU-VA3 + MVUC670CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
208 (56 + 67 + 85)	MVUC560CCU-VA3 + MVUC670CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
215 (45 + 85 + 85)	MVUC450CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
220 (50 + 85 + 85)	MVUC500CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
226 (56 + 85 + 85)	MVUC560CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
232 (62 + 85 + 85)	MVUC615CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
237 (67 + 85 + 85)	MVUC670CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
243 (73 + 85 + 85)	MVUC730CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
249 (79 + 85 + 85)	MVUC785CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G
255 (85 + 85 + 85)	MVUC850CCU-VA3 + MVUC850CCU-VA3 + MVUC850CCU-VA3	DJRT03F/DJRT03G

Внешний вид	Семейство разветвителей для наружных блоков				
	MIDEA	DAICHI	Назначение		
	FQZHW-02N1E	DJRT02F	Разветвитель для 2 наружных блоков (максимум 2×85 кВт)		
	FQZHW-03N1E	DJRT03F	Разветвитель для 3 наружных блоков (максимум 3×85 кВт)		
	FQZHW-02N1G	DJRT02G	Разветвитель для 2 наружных блоков (максимум 2×85 кВт)		
	FQZHW-03N1G	DJRT03G	Разветвитель для 3 наружных блоков (максимум 3×85 кВт)		

Технические характеристики

MVUH_CCU

Модель			MVUH35CCU- VA1	MVUH50CCU- VA1	MVUH60CCU- VA1	MVUH80CCU- VA1	MVUH100CCU- VA1	
	Производительность	кВт	3.5	5.3	6.2	8.0	10.0	
Охлаждение	Потребляемая мощность	кВт	0.94	1.47	1.85	2.10	2.66	
	EER		3.71	3.6	3.35	3.81	3.76	
	Производительность	кВт	3.8	5.8	6	9.0	12.0	
Нагрев	Потребляемая мощность	кВт	0.88	1.35	1.41	2.04	3.15	
	COP		4.43	4.3	4.25	4.41	3.81	
Эквивалентная производительность		HP	1.2	1.9	2.0	3.0	3.6	
17	Тип		DC inverter					
Компрессор Количество		ШТ	1	1	1	1	1	
Тип		DC inverter						
Вентиляторы	Количество	ШТ	1	1	1	1	1	
	Расход воздуха	м³/ч	2500	2700	2700	3750	4000	
Уровень звукового д	давления	дБ(А)	53	54	55	54	54	
Характеристики	Максимальный рабочий ток	Α	10	15	15	21.25	29	
тока	Номинал автомата защиты	А	16	20	20	25	32	
Заводская заправка	хладагента (R410A)	КГ		1.45	***************************************	1.7	2.6	
Трубопровод	Жидкость	ММ	6.	35	9.53			
хладагента Газ мм		ММ	12	12.7				
Электропитание		В, Гц, Ф	220 ~ 240, 50, 1					
Габаритные размеры (Ш×В×Г)		MM	795×555×365		910×7	12×426		
Macca		кг	35	35	35	49	52.5	
Диапазон рабочих	Охлаждение	°C			-15~55			
температур	Нагрев	°C			-15~27			

Модель			MVUH120CCU- VA1	MVUH140CCU- VA1	MVUH160CCU- VA1	MVUH180CCU- VA1	
	Производительность	кВт	12.3	14.0	15.5	17.5	
Охлаждение	Потребляемая мощность	кВт	3.4	4.0	4.9	6.1	
	EER		3.6	3.5	3.2	2.9	
	Производительность	кВт	14.0	16.0	18.0	19.5	
Нагрев	Потребляемая мощность	кВт	3.6	4.0	4.8	5.6	
	COP		3.9	4.0	3.7	3.5	
Эквивалентная производительность		HP	4.5	5.0	6.0	6.5	
Тип				DC in	verter		
Компрессор Количество		ШТ	1	1	1	1	
Тип			DC inverter				
Вентиляторы	Количество	ШТ	1	1	1	1	
	Расход воздуха	м³/ч	5000	5200	5000	5300	
Уровень звукового д	цавления	дБ(А)	56	56	56	57	
Характеристики	Максимальный рабочий ток	A	29	33	33	33	
тока	Номинал автомата защиты	A	40	40	40	40	
Заводская заправка	хладагента (R410A)	кг	3.2	3.1	3.6	4.6	
 Трубопровод	Жидкость	ММ	9.53	9.53	9.53	9.53	
хладагента	Газ	ММ	15.9	15.9	19.1	19.1	
Электропитание В, Гь		В, Гц, Ф	220 ~ 240, 50, 1				
Габаритные размеры (Ш×В×Г)		ММ		950×840×440		1040×865×523	
Macca		КГ	62.5	62.5 75.0 77.5			
Диапазон рабочих	Охлаждение	°C		-15·	-55		
температур	Нагрев	°C		-15·	-27		

Технические характеристики

MVUC_CCU

Модель			MVUC200CCU-VA3	MVUC224CCU-VA3	MVUC260CCU-VA3	MVUC280CCU-VA3	
	Производительность	кВт	20.0	22.4	26.0	28.1	
Охлаждение	Потребляемая мощность	кВт	5.13	5.93	7.43	8.24	
	EER		3.9	3.78	3.5	3.4	
	Производительность	кВт	-	-	-	-	
Нагрев	Потребляемая мощность	кВт	-	-	-	-	
	COP		-	-	-	-	
Эквивалентная производительность		HP	12	14	16	18	
	Тип			DC in	verter		
Компрессор	Количество	ШТ	1	1	1	1	
Тип		AC					
Вентиляторы	Количество	ШТ	2	2	2	2	
Уровень звукового д	давления	дБ(А)	57	57	58	59	
Характеристики	Максимальный рабочий ток	Α		26	5.4		
тока	Номинал автомата защиты	А		3	2		
Электропитание	Электропитание			380~41	5, 50, 3		
Заводская заправка	хладагента (R410A)	КГ		3	.9		
Трубопровод	Ø, жидкость	ММ		9.	53		
хладагента	Ø, газ		19.1				
Габаритные размерь		ММ		902×1327×370			
Масса кг			115				
Диапазон рабочих	Охлаждение	°C		-5·	-55		
температур	Нагрев	°C			-		

Модель		MVUC335CCU- VA3	MVUC400CCU- VA3	MVUC450CCU- VA3	MVUC500CCU- VA3	MVUC560CCU- VA3			
	Производительность	кВт	33.5	40	45	50	56		
Охлаждение	Потребляемая мощность	кВт	8.8	9.7	12.3	13.4	17.4		
	EER		3.81	4.12	3.67	3.74	3.21		
	Производительность	кВт	-	-	-	-	-		
Нагрев	Потребляемая мощность	кВт	-	-	-	-	-		
	COP		-	-	-	-	-		
Эквивалентная производительность		HP	12	14	16	18	20		
Тип					DC inverter				
омпрессор Количество		ШТ	1	1	1	1	1		
	Тип			DC					
Вентиляторы	Количество	ШТ	1	1	1	1	1		
	Расход воздуха	м³/ч	13500	15600	15600	16500	16500		
Уровень звукового д	авления	дБ(А)	60	60	61	62	63		
Характеристики	Максимальный рабочий ток	А	29.2	33.1	34.8	37.5	47		
тока	Номинал автомата защиты	А	32		40	***************************************	50		
Электропитание		В, Гц, Ф			380~415, 50, 3		*		
Заводская заправка хладагента (R410A)		КГ	7.4	8.4	8.4	10	10		
Трубопровод	Ø, жидкость	MM	12.7	15.9	15.9	15.9	15.9		
хладагента	Ø, газ	ММ	25.4	28.6	28.6	28.6	28.6		
Габаритные размеры (Ш×В×Г) мм				940×1760×825	***************************************	***************************************			
Масса транспортиро	вочная	КГ	185	200	200	212	225		
Диапазон рабочих	Охлаждение	°C			-15 ~ 55				
температур	Нагрев	°C			=				

Технические характеристики

MVUC(H)_CCU

Модель			MVUC615CCU -VA3	MVUC670CCU -VA3	MVUC730CCU -VA3	MVUC785CCU -VA3	MVUC850CCU -VA3	
Охлаждение	Производительность	кВт	61.5	67	73	78.5	85	
	Потребляемая мощность	кВт	17.3	19.0	19.4	22.3	26.4	
	EER		3.55	3.52	3.76	3.52	3.22	
Нагрев	Производительность	кВт	-	-	-	-	-	
	Потребляемая мощность	кВт	-	-	-	-	-	
	COP		-	-	-	-	-	
Эквивалентная производительность		HP	22	24	26	28	30	
Компрессор	Тип		DC inverter					
	Количество	ШТ	1	1	2	2	2	
	Тип		DC					
Вентиляторы	Количество	ШТ	2	2	2	2	2	
	Расход воздуха	м³/ч	21500	21500	22000	22000	22000	
Уровень звукового давления		дБ(А)	63	64	64	64	64	
Характеристики тока	Максимальный рабочий ток	А	47.5	49.5	55.0	57.5	59.6	
	Номинал автомата защиты	А	50	63	63	63	63	
Электропитание		В, Гц, Ф		380~415, 50, 3				
Заводская заправка хладагента (R-410A)		КГ	12.8	12.8	15.4	15.4	15.4	
T	Ø, жидкость	MM	19.1	19.1	22.2	22.2	22.2	
Трубопровод	Ø, газ		31.8	31.8	31.8	31.8	31.8	
Габаритные размеры (Ш×В×Г) мм		1340×1760×825						
Масса транспортировочная к		КГ	260	260	325	325	325	
Диапазон рабочих температур	Охлаждение	°C		*	-15 ~ 55	*		
	Нагрев	°C			-			

Модель			MVUH1060CCU-VA3
	Производительность	кВт	106
Охлаждение	Потребляемая мощность	кВт	37.7
	EER		2.81
	Производительность	кВт	119
Нагрев	Потребляемая мощность	кВт	38.26
	COP		3.11
жвивалентная производительность	HP	38	
	Тип		DC inverter
(омпрессор	Количество	ШТ	2
	Тип		DC
Вентиляторы	Количество	ШТ	2
	Расход воздуха	м³/ч	30000
/ровень звукового давления	дБ(А)	67	
Характеристики тока	Максимальный рабочий ток	А	74.6
	Номинал автомата защиты	А	100
Электропитание		В, Гц, Ф	380~415, 50, 3
аводская заправка хладагента (R410A)		КГ	24
	Ø, жидкость	MM	22.2
рубопровод хладагента	Ø, газ	MM	34.9
абаритные размеры (Ш×В×Г)		MM	1880×1760×825
1асса транспортировочная	КГ	440	
	Охлаждение	°C	-15 ~ 55
lиапазон рабочих температур	Нагрев	°C	-30 ~ 30
	М	195	
	М	110	

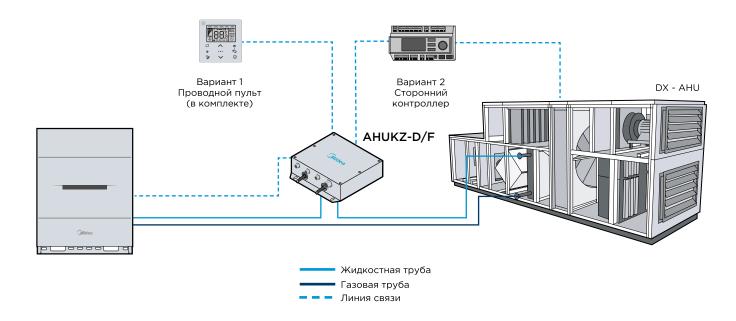
Модули для фреоновых секций центральных кондиционеров

AHUKZ-F AHUKZ-D AHUKZ-D(At)

Инструкция AHUKZ-F

Инструкция AHUKZ-D

Инструкция AHUKZ-D(At)


Модули AHUKZ-F/AHUKZ-D/AHUKZ-D(At) предназначены для подключения теплообменников центральных кондиционеров к инверторным блокам ККБ производства Midea. В состав модуля входят блок с 9PB, температурные датчики и проводной пульт управления.

ПРИМЕЧАНИЕ

Совместимость модулей смотрите на страницах 214, 215, 216, 218.

Главные особенности AHUKZ

- 1. Совместная работа AHU и внутренних блоков в одной системе.
- 2. Подключение нескольких AHU.
- 3. Управление:
- по температуре воздуха, задаваемой с пульта управления;
- по температуре воздуха, задаваемой внешним сигналом 0—10 В;
- производительностью внешним сигналом 0—10 В.

Рекомендуемые модули для фреоновых секций центральных кондиционеров

AHUKZ-F AHUKZ-D AHUKZ-D(At)

Модель ККБ	Рекомендуемый комплект обвязки
MVUH35CCU-VA1	AHUKZ-00D(At) / AHUKZ-00F
MVUH50CCU-VA1	AHUKZ-00D(At) / AHUKZ-00F
MVUH60CCU-VA1	AHUKZ-00D(At) / AHUKZ-00F
MVUH80CCU-VA1	AHUKZ-00D(At) / AHUKZ-00F
MVUH100CCU-VA1	AHUKZ-01D(At) / AHUKZ-01F
MVUH120CCU-VA1	AHUKZ-01D(At) / AHUKZ-01F
MVUH140CCU-VA1	AHUKZ-01D(At) / AHUKZ-01F
MVUH160CCU-VA1	AHUKZ-01D(At) / AHUKZ-01F
MVUH180CCU-VA1	AHUKZ-01D(At) / AHUKZ-01F
MVUC35CCU-VA1	AHUKZ-00F
MVUC50CCU-VA1	AHUKZ-00F
MVUC60CCU-VA1	AHUKZ-00F
MVUC80CCU-VA1	AHUKZ-00F
MVUC100CCU-VA1	AHUKZ-01F
MVUC120CCU-VA1	AHUKZ-01F
MVUC140CCU-VA1	AHUKZ-01F
MVUC160CCU-VA1	AHUKZ-01F
MVUC180CCU-VA1	AHUKZ-01F
MVUC200CCU-VA3	AHUKZ-01D / AHUKZ-01F
MVUC224CCU-VA3	AHUKZ-02D / AHUKZ-02F
MVUC260CCU-VA3	AHUKZ-02D / AHUKZ-02F
MVUC280CCU-VA3	AHUKZ-02D / AHUKZ-02F
MVUC335CCU-VA3	AHUKZ-02D / AHUKZ-02F
MVUC400CCU-VA3	AHUKZ-03D / AHUKZ-03F
MVUC450CCU-VA3	AHUKZ-03D / AHUKZ-03F
MVUC500CCU-VA3	AHUKZ-03D / AHUKZ-03F
MVUC560CCU-VA3	AHUKZ-03D / AHUKZ-03F
MVUC615CCU-VA3	AHUKZ-04D + DJRD-02 / AHUKZ-04F
MVUC670CCU-VA3	AHUKZ-04D + DJRD-02 / AHUKZ-04F
MVUC730CCU-VA3	AHUKZ-04D + DJRD-03 / AHUKZ-04F
MVUC785CCU-VA3	AHUKZ-04D + DJRD-03 / AHUKZ-04F
MVUC850CCU-VA3	AHUKZ-04D + DJRD-03 / AHUKZ-04F
MVUH1060CCU-VA3	AHUKZ-04D + DJRD-04 / AHUKZ-04F

ПРИМЕЧАНИЕ

При подключении к одному одноконтурному фреоновому охладителю.
Модель разветвителя DJRD определяется расчетом в программе подбора в зависимости от конфигурации системы.

Семейство разветвителей для подключения испарителей приточных установок совместно с AHUKZ				
	DAICHI	Назначение		
	DJRD-02	Разветвитель для AHU-блоков		
	DJRD-03	Разветвитель для AHU-блоков		
	DJRD-04	Разветвитель для AHU-блоков		

VRFXpress

Программа подбора

Уникальная разработка компании «Даичи»

VRFXpress — уникальная программа подбора VRF-систем, разработанная специалистами «Даичи».

Она позволяет качественно и быстро подготовить комплексное коммерческое предложение, включающее тепловые расчеты помещения, подбор оборудования, его характеристики и спецификацию.

Простота подбора оборудования

Программой могут пользоваться как технические специалисты, так и пользователи с начальной технической подготовкой, поскольку подбор оборудования осуществляется наглядно, быстро и с минимальным количеством исходных данных.

Для наглядности при подборе блоки окрашиваются в цвета по аналогии со светофором: зеленый, желтый и красный. Это позволяет быстро оценить правильность подбора и выбрать подходящее оборудование.

Результаты подбора могут сохраняться и в дальнейшем редактироваться. Отчеты выводятся в виде файлов Microsoft Office Word и содержат всю необходимую подробную информацию по проекту.

Функция расчета тепловой нагрузки в помещении

B VRFXpress можно воспользоваться уникальным инструментом для расчета тепловой нагрузки, который предназначен для точного и комплексного подбора требуемого оборудования.

Быстрый расчет осуществляется на основании трех параметров: город, тип помещения и его площадь. После введения данных программа быстро проводит тепловой расчет и предлагает оптимальный выбор оборудования, учитывая полученные данные.

Если подбор оборудования производится по рассчитанным в программе теплопритокам, то происходит расчет реальных характеристик оборудования при заданных исходных данных с учетом расчетной влажности в помещении, что позволяет получить еще более точные параметры оборудования.

Загрузить

Модуль для подбора CCU

Главные особенности VRFXpress:

- подбор оборудования любого бренда из портфеля «Даичи» в единой программе;
- интуитивно понятный русскоязычный интерфейс;
- быстрая подготовка коммерческого предложения;
- возможность расчета тепловой нагрузки помещений;
- онлайн-обновление программы;
- удобный подбор систем управления Даичи.



^{*} Может потребоваться регистрация на https://daichi.business/

Открой мир невероятных приключений с «Даичи»



Участвуй в программе, побеждай с «Даичи»

Для заметок	

• МОСКВА, ЦЕНТРАЛЬНЫЙ ОФИС

г. Москва, Ленинградский пр-т, д. 39, стр. 80 (бизнес-центр Skylight, башня В), эт. 17 телефон: +7 (495) 737-37-33 info@cfo.daichi.ru

• МОСКВА • Шоурум

г. Москва, ул. Щукинская, д. 6 к. 3 телефон: +7 (495) 737-37-33 info@daichi.ru

• АСТРАХАНЬ

г. Астрахань, ул. Боевая, д. 136 телефон: +7 (8512) 207-307 info@astrakhan.daichi.ru

• владивосток

г. Владивосток, ул. Союзная, д. 28, каб. 28 телефон: +7 (4232) 448-330, +7 (4232) 453-959 info@vl.daichi.ru

• волгоград

г. Волгоград, ул. Ангарская, д. 107 телефон: +7 (8442) 36-13-06, +7 (8442) 36-03-34 info@volgograd.daichi.ru

• воронеж

г. Воронеж, ул. Никитинская, д. 52A, офис 22 телефон: +7 (473) 277-89-65, +7 (473) 277-12-40 info@vrn.daichi.ru

• ЕКАТЕРИНБУРГ (+ Шоурум)

г. Екатеринбург, ул. Луначарского, д. 185, пом. 9 телефон: +7 (343) 239-52-22, +7 (343) 382-01-03 info@ural.daichi.ru

• ИРКУТСК

г. Иркутск, ул. Ширямова, д. 40, офис 228, 229 телефон: +7 (3952) 207-104, +7 (3952) 207-114 info@irk.daichi.ru

• КАЛИНИНГРАД

г. Калининград, ул. Больничная, д. 24, офис 48a-49a телефон: +7 (4012) 53-94-14, +7 (4012) 53-93-43 info@baltika.daichi.ru

• КРАСНОДАР + Шоурум

г. Краснодар, ул. Аэродромная, д. 19, офис 24/1 телефон: +7 (861) 238-40-61 info@krd.daichi.ru

• КРАСНОЯРСК

г. Красноярск, ул. Шахтеров, д. 4, стр. 3 телефон: (391) 291-80-20 info@krsk.daichi.ru

• минск

г. Минск, ул. Кульман 35А, каб. 15, 2-й этаж телефон: +375 (17) 344-44-45 info@daichi-belarus.by

• нижний новгород

г. Нижний Новгород, ул. Маршала Казакова, д. 5, литер ББ1, пом. 26 телефон: +7 (831) 268-22-21 info@nnov.daichi.ru

• новосибирск

г. Новосибирск, ул. Коммунистическая, д. 2, пом. 902, 904 телефон: +7 (383) 328-08-04 info@nsk.daichi.ru

• омск

г. Омск, ул. Лермонтова, д. 179а к. 1 телефон: +7 (3812) 36-95-45 info@omsk.daichi.ru

• РОСТОВ-НА-ДОНУ • Шоурум

г. Ростов-на-Дону, ул. 50-летия Ростсельмаша, д. 1/52, ком. 11 телефон: +7 (863) 203-71-61 info@rostov.daichi.ru

• САНКТ-ПЕТЕРБУРГ

г. Санкт-Петербург, БЦ Континент, ул. Звездная, д. 1, офис 901/2 телефон: +7 (812) 448-80-87 info@spb.daichi.ru

• СИМФЕРОПОЛЬ

г. Симферополь, улица Набережная, 75-Д, эт. 4 телефон: +7 (978) 996-92-92 info@crimea.daichi.ru

СОЧИ

г. Сочи, ул. Кипарисовая, д. 12 телефон: +7 (862) 261-64-63, +7 (862) 261-60-90 info@sochi.daichi.ru

• тольятти

г. Тольятти, ул. Новый проезд, д. 3, офис 227 телефон: +7 (8482) 200-145 info@volga.daichi.ru

• УФА

г. Уфа, Сафроновский проезд, д. 6 телефон: +7 (347) 293-77-60 info@ufa.daichi.ru

• ХАБАРОВСК

г. Хабаровск, ул. Иркутская, д. 6, офис 111 телефон: +7 (4212) 35-85-25 info@khb.daichi.ru

